讲解 记椭圆的二焦点为.有 查看更多

 

题目列表(包括答案和解析)

已知焦点在x轴上椭圆的长轴的端点分别为A,B,O为椭圆的中心,F为右焦点,且
AF
BF
=-1
,离心率e=
2
2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)记椭圆的上顶点为M,直线l交椭圆于P,Q两点,问:是否存在直线l,使点F恰好为△PQM的垂心?若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

在极坐标系中,椭圆的二焦点分别在极点和点(2c,0),离心率为e,则它的极坐标方程是(  )
A、ρ=
c(1-e)
1-ecosθ
B、ρ=
c(1-e2)
1-ecosθ
C、ρ=
c(1-e)
1-ecosθ
D、ρ=
c(1-e2)
e(1-ecosθ)

查看答案和解析>>

(2012•盐城二模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,且过点P(
2
2
1
2
)
,记椭圆的左顶点为A.
(1)求椭圆的方程;
(2)设垂直于y轴的直线l交椭圆于B,C两点,试求△ABC面积的最大值;
(3)过点A作两条斜率分别为k1,k2的直线交椭圆于D,E两点,且k1k2=2,求证:直线DE恒过一个定点.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线,且经过椭圆的右焦点,记椭圆的离心率为e.
(1)若直线l的倾斜角为
π
6
,求e的值;
(2)是否存在这样的e,使得原点O关于直线l对称的点恰好在椭圆C上?若存在,请求出e的值;若不存在,请说明理由.

查看答案和解析>>

精英家教网如图,椭圆长轴端点为A,B,O为椭圆中心,F为椭圆的右焦点,且
AF
FB
=1
|
OF
|=1

(1)求椭圆的标准方程;
(2)记椭圆的上顶点为M,直线l交椭圆于P,Q两点,问:是否存在直线l,使点F恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案