题目列表(包括答案和解析)
解不等式: ![]()
【解析】本试题主要是考查了分段函数与绝对值不等式的综合运用。利用零点分段论 的思想,分为三种情况韬略得到解集即可。也可以利用分段函数图像来解得。
解:方法一:零点分段讨论:
方法二:数形结合法:![]()
某厂在一个空间容积为2000m3的密封车间内生产某种化学药品.开始生产后,每满60分钟会一次性释放出有害气体am3,并迅速扩散到空气中.每次释放有害气体后,车间内的净化设备随即自动工作20分钟,将有害气体的含量降至该车间内原有有害气体含量的r%,然后停止工作,待下一次有害气体释放后再继续工作.安全生产条例规定:只有当车间内的有害气体总量不超过1.25am3时才能正常进行生产.
(Ⅰ)当r=20时,该车间能否连续正常生产6.5小时?请说明理由;
(Ⅱ)能否找到一个大于20的数据r,使该车间能连续正常生产6.5小时?请说明理由;
(Ⅲ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分)
已知该净化设备的工作方式是:在向外释放出室内混合气体(空气和有害气体)的同时向室内放入等体积的新鲜空气.已知该净化设备的换气量是200m3/分,试证明该设备连续工作20分钟能够将有害气体含量降至原有有害气体含量的20%以下.(提示:我们可以将净化过程划分成n次,且n趋向于无穷大.)
解关于
的不等式:
![]()
【解析】解:当
时,原不等式可变为
,即
(2分)
当
时,原不等式可变为
(5分) 若
时,
的解为
(7分)
若
时,
的解为
(9分) 若
时,
无解(10分) 若
时,
的解为
(12分综上所述
当
时,原不等式的解为![]()
当
时,原不等式的解为![]()
当
时,原不等式的解为![]()
当
时,原不等式的解为![]()
当
时,原不等式的解为: ![]()
已知
,设命题
:不等式
解集为R;命题
:方程![]()
没有实根,如果命题p或q为真命题,p且q为假命题,求
的取值范围.
【解析】本题先求出p、q为真时的c的取值范围;然后再对p、q一真一假两种情况进行讨论求解,最后求并集即可.
先阅读下列不等式的证法,再解决后面的问题:
已知![]()
证明:构造函数![]()
即![]()
因为对一切
,恒有
,所以
从而得![]()
(1)若a1,a2,…,an∈R,a1+a2+…+an=1,请写出上述问题的推广式.
(2)对推广的问题加以证明.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com