解:(1)不等式即为 查看更多

 

题目列表(包括答案和解析)

解不等式:

【解析】本试题主要是考查了分段函数与绝对值不等式的综合运用。利用零点分段论 的思想,分为三种情况韬略得到解集即可。也可以利用分段函数图像来解得。

解:方法一:零点分段讨论:   方法二:数形结合法:

 

查看答案和解析>>

某厂在一个空间容积为2000m3的密封车间内生产某种化学药品.开始生产后,每满60分钟会一次性释放出有害气体am3,并迅速扩散到空气中.每次释放有害气体后,车间内的净化设备随即自动工作20分钟,将有害气体的含量降至该车间内原有有害气体含量的r%,然后停止工作,待下一次有害气体释放后再继续工作.安全生产条例规定:只有当车间内的有害气体总量不超过1.25am3时才能正常进行生产.

(Ⅰ)当r=20时,该车间能否连续正常生产6.5小时?请说明理由;

(Ⅱ)能否找到一个大于20的数据r,使该车间能连续正常生产6.5小时?请说明理由;

(Ⅲ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分)

已知该净化设备的工作方式是:在向外释放出室内混合气体(空气和有害气体)的同时向室内放入等体积的新鲜空气.已知该净化设备的换气量是200m3/分,试证明该设备连续工作20分钟能够将有害气体含量降至原有有害气体含量的20%以下.(提示:我们可以将净化过程划分成n次,且n趋向于无穷大.)

查看答案和解析>>

解关于的不等式:

【解析】解:当时,原不等式可变为,即            (2分)

 当时,原不等式可变为         (5分)  若时,的解为            (7分)

 若时,的解为         (9分) 若时,无解(10分) 若时,的解为  (12分综上所述

时,原不等式的解为

时,原不等式的解为

时,原不等式的解为

时,原不等式的解为

时,原不等式的解为:

 

查看答案和解析>>

已知,设命题:不等式解集为R;命题:方程没有实根,如果命题p或q为真命题,p且q为假命题,求的取值范围.

【解析】本题先求出p、q为真时的c的取值范围;然后再对p、q一真一假两种情况进行讨论求解,最后求并集即可.

 

查看答案和解析>>

先阅读下列不等式的证法,再解决后面的问题:

已知

证明:构造函数

因为对一切,恒有,所以从而得

(1)若a1,a2,…,an∈R,a1+a2+…+an=1,请写出上述问题的推广式.

(2)对推广的问题加以证明.

查看答案和解析>>


同步练习册答案