题目列表(包括答案和解析)
已知函数
(
为实数).
(Ⅰ)当
时,求
的最小值;
(Ⅱ)若
在
上是单调函数,求
的取值范围.
【解析】第一问中由题意可知:
. ∵
∴
∴![]()
.
当
时,
;
当
时,
. 故
.
第二问![]()
.
当
时,
,在
上有
,
递增,符合题意;
令
,则![]()
,∴
或
在
上恒成立.转化后解决最值即可。
解:(Ⅰ) 由题意可知:
. ∵
∴
∴![]()
.
当
时,
;
当
时,
. 故
.
(Ⅱ) ![]()
.
当
时,
,在
上有
,
递增,符合题意;
令
,则![]()
,∴
或
在
上恒成立.∵二次函数
的对称轴为
,且![]()
∴
或![]()
或![]()
或![]()
或
. 综上![]()
若有穷数列
(
是正整数),满足
,
,
,
,即
(
是正整数,且
),就称该数列为“对称数列”.
(1)已知数列
是项数为7的对称数列,且
成等差数列,
,试写出
的每一项.
(2)已知
是项数为
的对称数列,且
构成首项为50,公差为
的等差数列,数列
的前
项和为
,则当
为何值时,
取到最大值?最大值为多少?
(3)对于给定的正整数
,试写出所有项数不超过
的对称数列,使得
成为数列中的连续项;当
时,试求其中一个数列的前2008项和
.
若有穷数列
(
是正整数),满足
,
,
,
,即
(
是正整数,且
),就称该数列为“对称数列”.
(1)已知数列
是项数为7的对称数列,且
成等差数列,
,试写出
的每一项.
(2)已知
是项数为
的对称数列,且
构成首项为50,公差为
的等差数列,数列
的前
项和为
,则当
为何值时,
取到最大值?最大值为多少?
(3)对于给定的正整数
,试写出所有项数不超过
的对称数列,使得
成为数列中的连续项;当
时,试求其中一个数列的前2008项和
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com