题目列表(包括答案和解析)
椭圆
的左、右焦点分别为
,一条直线
经过点
与椭圆交于
两点.
⑴求
的周长;
⑵若
的倾斜角为
,求
的面积.
【解析】(1)根据椭圆的定义
的周长等于4a.
(2)设
,则
,然后直线l的方程与椭圆方程联立,消去x,利用韦达定理可求出所求三角形的面积.
已知椭圆![]()
的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(I)求椭圆
的方程;
(II)若过点
(2,0)的直线与椭圆
相交于两点
,设
为椭圆上一点,且满足
(O为坐标原点),当
<
时,求实数
的取值范围.
【解析】本试题主要考查了椭圆的方程以及直线与椭圆的位置关系的运用。
第一问中,利用![]()
第二问中,利用直线与椭圆联系,可知得到一元二次方程中
,可得k的范围,然后利用向量的
<
不等式,表示得到t的范围。
解:(1)由题意知
![]()
已知椭圆
的焦点在
轴上,中心在原点,离心率
,直线
与以原点为圆心,椭圆
的短半轴为半径的圆
相切.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设椭圆
的左、右顶点分别为
、
,点
是椭圆上异于
、
的任意一点,设直线
、
的斜率分别为
、
,证明
为定值;
(Ⅲ)设椭圆方程
,
、
为长轴两个端点,
为椭圆上异于
、
的点,
、
分别为直线
、
的斜率,利用上面(Ⅱ)的结论得
( )(只需直接填入结果即可,不必写出推理过程).
已知椭圆
的焦点在
轴上,中心在原点,离心率
,直线
与以原点为圆心,椭圆
的短半轴为半径的圆
相切.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设椭圆
的左、右顶点分别为
、
,点
是椭圆上异于
、
的任意一点,设直线
、
的斜率分别为
、
,证明
为定值;
(Ⅲ)设椭圆方程
,
、
为长轴两个端点,
为椭圆上异于
、
的点,
、
分别为直线
、
的斜率,利用上面(Ⅱ)的结论得
( )(只需直接填入结果即可,不必写出推理过程).
已知椭圆的长轴长为
,焦点是
,点
到直线
的距离为
,过点
且倾斜角为锐角的直线
与椭圆交于A、B两点,使得
.
(1)求椭圆的标准方程; (2)求直线l的方程.
【解析】(1)中利用点F1到直线x=-
的距离为
可知-
+
=
.得到a2=4而c=
,∴b2=a2-c2=1.
得到椭圆的方程。(2)中,利用
,设出点A(x1,y1)、B(x2,y2).,借助于向量公式
再利用 A、B在椭圆
+y2=1上, 得到坐标的值,然后求解得到直线方程。
解:(1)∵F1到直线x=-
的距离为
,∴-
+
=
.
∴a2=4而c=
,∴b2=a2-c2=1.
∵椭圆的焦点在x轴上,∴所求椭圆的方程为
+y2=1.……4分
(2)设A(x1,y1)、B(x2,y2).由第(1)问知![]()
,![]()
∴
……6分
∵A、B在椭圆
+y2=1上,
∴
……10分
∴l的斜率为
=
.
∴l的方程为y=
(x-
),即
x-y-
=0.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com