[例1]如图所示.平行导轨置于磁感应强度为B的匀强磁场中.间距为L.左端电阻为R.其余电阻不计.导轨右端接一电容为C的电容器.现有一长2L的金属棒ab放在导轨上.ab以a为轴顺时针转过90°的过程中.通过R的电量为多少?解析:(1)由ab棒以a为轴旋转到b端脱离导轨的过程中.产生的感应电动势一直增大.对C不断充电.同时又与R构成闭合回路.ab产生感应电动势的平均值 查看更多

 

题目列表(包括答案和解析)

如图所示,电阻不计的平行金属导轨MN和OP放置在水平面内,MO间接有阻值为R=3Ω的电阻.导轨相距d=lm,其间有竖直向下的匀强磁场,磁感强度B=0.5T.质量为m=0.1kg,电阻为r=lΩ的导体棒CD垂直于导轨放置,并接触良好.用平行于 MN的恒力F=1N向右拉动CD。CD受摩擦阻力f恒为0.5N.求
【小题1】CD运动的最大速度是多少?
【小题2】当CD的速度为最大速度的一半时,CD的加速度是多少?

查看答案和解析>>

如图所示,小灯泡的规格为“2V、4W”,连接在光滑水平导轨上,两导轨相距0.1m,电阻不计,金属棒ab垂直搁置在导轨上,电阻1Ω,整个装置处于磁感强度B=1T的匀强磁场中,求:

【小题1】为使小灯正常发光,ab的滑行速度多大?
【小题2】拉动金属棒ab的外力的功率多大?

查看答案和解析>>

如图所示,MNPQ为相距L=0.2 m的光滑平行导轨,导轨平面与水平面夹角为θ=30°,导轨处于磁感应强度为B=1 T、方向垂直于导轨平面向上的匀强磁场中,在两导轨的MP两端接有一电阻为R=2 Ω的定值电阻,回路其余电阻不计.一质量为m=0.2 kg的导体棒垂直导轨放置且与导轨接触良好.今平行于导轨在导体棒的中点对导体棒施加一作用力F,使导体棒从ab位置由静止开始沿导轨向下匀加速滑到底端,滑动过程中导体棒始终垂直于导轨,加速度大小为a=4 m/s2,经时间t=1 s滑到cd位置,从abcd过程中电阻发热为Q=0.1 J,g取10 m/s2.求:

【小题1】到达cd位置时,对导体棒施加的作用力;
【小题2】导体棒从ab滑到cd过程中作用力F所做的功.

查看答案和解析>>

如图所示,MNPQ为相距L=0.2 m的光滑平行导轨,导轨平面与水平面夹角为θ=30°,导轨处于磁感应强度为B=1 T、方向垂直于导轨平面向上的匀强磁场中,在两导轨的MP两端接有一电阻为R=2 Ω的定值电阻,回路其余电阻不计.一质量为m=0.2 kg的导体棒垂直导轨放置且与导轨接触良好.今平行于导轨在导体棒的中点对导体棒施加一作用力F,使导体棒从ab位置由静止开始沿导轨向下匀加速滑到底端,滑动过程中导体棒始终垂直于导轨,加速度大小为a=4 m/s2,经时间t=1 s滑到cd位置,从abcd过程中电阻发热为Q=0.1 J,g取10 m/s2.求:

【小题1】到达cd位置时,对导体棒施加的作用力;
【小题2】导体棒从ab滑到cd过程中作用力F所做的功.

查看答案和解析>>

如图所示,在水平面上固定一光滑金属导轨HGDEFEF∥GHDE=EF=DG=GH=EG=L.一质量为m足够长导体棒AC垂直EF方向放置于在金属导轨上,导轨与导体棒单位长度的电阻均为r.整个装置处在方向竖直向下、磁感应强度为B的匀强磁场中.现对导体棒AC施加一水平向右的外力,使导体棒从D位置开始以速度v0沿EF方向做匀速直线运动,导体棒在滑动过程中始终保持与导轨良好接触.

【小题1】求导体棒运动到FH位置,即将离开导轨时,FH两端的电势差.
【小题2】关于导体棒运动过程中回路产生感应电流,小明和小华两位同学进行了讨论.小明认 为导体棒在整个运动过程中是匀速的,所以回路中电流的值是恒定不变的;小华则认 为前一过程导体棒有效切割长度在增大,所以电流是增大的,后一过程导体棒有效切 割长度不变,电流才是恒定不变的.你认为这两位同学的观点正确吗?请通过推算证 明你的观点.
【小题3】求导体棒从D位置运动到EG位置的过程中,导体棒上产生的焦耳热.

查看答案和解析>>

1.B.提示:将圆环转换为并联电源模型,如图

2.CD     3.AD

4.Q=IΔt=Q=

5.(1)3.2×10-2 N (2)1.28×10-2 J

提示:将电路转换为直流电路模型如图.

6.(1)电压表  理由略 (2)F=1.6 N (3)Q=0.25 C

7.(1)如图所示,当EF从距BDs处由静止开始滑至BD的过程中,受力情况如图所示.安培力:F=BIl=B

根据牛顿第二定律:a=                                                            ①

所以,EF由静止开始做加速度减小的变加速运动.当a=0时速度达到最大值vm.

由①式中a=0有:Mgsinθ-B2l2vm/R=0                                                                 ②

vm=

(2)由恒力F推至距BDs处,棒先减速至零,然后从静止下滑,在滑回BD之前已达最大速度vm开始匀速.

EF棒由BD从静止出发到再返回BD过程中,转化成的内能为ΔE.根据能的转化与守恒定律:

Fs-ΔE=Mvm2                                                                                                                                                                                                          

ΔE=Fs-M2                                                                                                                                                                  

8.(1)每半根导体棒产生的感应电动势为

E1=Bl=Bl2ω=×0.4×103×(0.5)2 V=50 V.

(2)两根棒一起转动时,每半根棒中产生的感应电动势大小相同、方向相同(从边缘指向中心),相当于四个电动势和内阻相同的电池并联,得总的电动势和内电阻

E=E1=50 V,r=R0=0.1 Ω

当电键S断开时,外电路开路,电流表示数为零,电压表示数等于电源电动势,为50 V.

当电键S′接通时,全电路总电阻为

R′=r+R=(0.1+3.9)Ω=4Ω.

由全电路欧姆定律得电流强度(即电流表示数)为

I= A=12.5 A.

此时电压表示数即路端电压为

U=E-Ir=50-12.5×0.1 V=48.75 V(电压表示数)

U=IR=12.5×3.9 V=48.75 V


同步练习册答案