联立⑤⑥得:(2)当ab棒脱离导轨后(对R放电.通过R的电量为 Q2.所以整个过程中通过 R的总电量为: 查看更多

 

题目列表(包括答案和解析)

(2013天津市五校联考)如下图(a)所示,间距为L、电阻不计的光滑导轨固定在倾角为θ的斜面上。在区域I内有方向垂直于斜面的匀强磁场,磁感应强度为B,在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度Bt的大小随时间t变化的规律如下图(b)所示。t=0时刻在轨道上端的金属细棒ab从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd在位于区域I内的导轨上由静止释放。在ab棒运动到区域Ⅱ的下边界EF处之前,cd棒始终静止不动,两棒均与导轨接触良好。已知ab棒和cd棒的质量均为m、电阻均为R,区域Ⅱ沿斜面的长度为2L,在t=tx时刻(tx未知)ab棒恰进入区域Ⅱ,重力加速度为g。求:

(1)通过cd棒电流的方向和区域I内磁场的方向

(2)当ab棒在区域Ⅱ内运动时cd棒消耗的电功率和热量

(3)ab棒开始下滑至EF的过程中流过导体棒cd的的电量

查看答案和解析>>

精英家教网如图所示,ECADF为水平光滑金属轨道,其中EC、FD段相互平行,足够长且电阻不计;CAD段是一半圆弧,O是圆心,其半径r=0.5m、电阻R1=24Ω;E、F端用导线接有阻值R0=8Ω的电阻.整个轨道处在磁感强度B=2T的竖直向下的匀强磁场中.金属棒ab质量m=0.5kg,其电阻为零,横跨在轨道上且保持与轨道接触良好;棒在水平外力作用下,从轨道的顶点A开始沿轨道匀速向右滑动,速度v=6m/s.
(1)当ab棒通过图中c、d两点时(c、d两点位置如图中所示,θ=60°),计算R0此时刻的电功率;
(2)当ab棒在CE段运动时,求水平拉力做功的功率.

查看答案和解析>>

精英家教网如图(a)所示,间距为l、电阻不计的光滑导轨固定在倾角为θ的斜面上.在区域I内有方向垂直于斜面的匀强磁场,磁感应强度为B;在区域Ⅱ内有垂直于斜面向下区域I区域Ⅱ有垂直于斜面向下的匀强磁场,其磁感应强度Bt的大小随时间t变化的规律如图(b)所示.t=0时刻在轨道上端的金属细棒ab从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd在位于区域I内的导轨上由静止释放.在ab棒运动到区域Ⅱ的下边界EF处之前,cd棒始终静止不动,两棒均与导轨接触良好.
已知cd棒的质量为m、电阻为R,ab棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l,在t=tx时刻(tx未知)ab棒恰进入区域Ⅱ,重力加速度为g.求:
(1)通过cd棒电流的方向和区域I内磁场的方向;
(2)当ab棒在区域Ⅱ内运动时cd棒消耗的电功率;
(3)ab棒开始下滑的位置离EF的距离;
(4)ab棒开始下滑至EF的过程中回路中产生的热量.

查看答案和解析>>

水平放置的平行金属框架宽L=0.2m,质量为m=0.1kg的金属棒ab放在框架上,并且与框架的两个边垂直.整个装置放在方向竖直向下磁感应强度B=0.5T的匀强磁场中,如图所示.金属棒ab在F=2N的水平向右的恒力作用下由静止开始运动.电路中除定值电阻R=0.05Ω外,其他电阻、摩擦阻力均不考虑,求:
(1)ab速度是v=5m/s时,棒的加速度a是多大?
(2)当ab棒达到最大速度vm后,撤去外力F,此后感应电流还能产生多少热量Q?

查看答案和解析>>

如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度v0,若两导体棒在运动中始终不接触,求:
(1)在运动中产生的焦耳热最多是多少?
(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?

查看答案和解析>>

1.B.提示:将圆环转换为并联电源模型,如图

2.CD     3.AD

4.Q=IΔt=Q=

5.(1)3.2×10-2 N (2)1.28×10-2 J

提示:将电路转换为直流电路模型如图.

6.(1)电压表  理由略 (2)F=1.6 N (3)Q=0.25 C

7.(1)如图所示,当EF从距BDs处由静止开始滑至BD的过程中,受力情况如图所示.安培力:F=BIl=B

根据牛顿第二定律:a=                                                            ①

所以,EF由静止开始做加速度减小的变加速运动.当a=0时速度达到最大值vm.

由①式中a=0有:Mgsinθ-B2l2vm/R=0                                                                 ②

vm=

(2)由恒力F推至距BDs处,棒先减速至零,然后从静止下滑,在滑回BD之前已达最大速度vm开始匀速.

EF棒由BD从静止出发到再返回BD过程中,转化成的内能为ΔE.根据能的转化与守恒定律:

Fs-ΔE=Mvm2                                                                                                                                                                                                          

ΔE=Fs-M2                                                                                                                                                                  

8.(1)每半根导体棒产生的感应电动势为

E1=Bl=Bl2ω=×0.4×103×(0.5)2 V=50 V.

(2)两根棒一起转动时,每半根棒中产生的感应电动势大小相同、方向相同(从边缘指向中心),相当于四个电动势和内阻相同的电池并联,得总的电动势和内电阻

E=E1=50 V,r=R0=0.1 Ω

当电键S断开时,外电路开路,电流表示数为零,电压表示数等于电源电动势,为50 V.

当电键S′接通时,全电路总电阻为

R′=r+R=(0.1+3.9)Ω=4Ω.

由全电路欧姆定律得电流强度(即电流表示数)为

I= A=12.5 A.

此时电压表示数即路端电压为

U=E-Ir=50-12.5×0.1 V=48.75 V(电压表示数)

U=IR=12.5×3.9 V=48.75 V


同步练习册答案