题目列表(包括答案和解析)
已知函数
.
(Ⅰ)讨论函数
的单调性;
(Ⅱ)设
,证明:对任意
,
.
1.选修4-1:几何证明选讲
如图,
的角平分线
的延长线交它的外接圆于点![]()
(Ⅰ)证明:
∽△
;
(Ⅱ)若
的面积
,求
的大小.
证明:(Ⅰ)由已知条件,可得∠BAE=∠CAD.
因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD.
故△ABE∽△ADC.
(Ⅱ)因为△ABE∽△ADC,所以
,即AB·AC=AD·AE.
又S=
AB·ACsin∠BAC,且S=
AD·AE,故AB·ACsin∠BAC=AD·AE.
则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.
如图,在四面体ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1.
(1)设P为AC的中点.证明:在AB上存在一点Q,使PQ⊥OA,并计算
的值;
(2)求二面角O-AC-B的平面角的余弦值.
![]()
如图,在四面体ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1.
(1)设P为AC的中点.证明:在AB上存在一点Q,使PQ⊥OA,并计算
的值;
(2)求二面角O-AC-B的平面角的余弦值.![]()
如图,AC是平面 的斜线,且AO=a,AO与 成60º角,OCÌa,AA′⊥ 于A′,∠A′OC=45º,则点A到直线OC的距离是 .
![]()
如图,在四面体ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1.
(1)设P为AC的中点.证明:在AB上存在一点Q,使PQ⊥OA,并计算的值;
(2)求二面角O-AC-B的平面角的余弦值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com