又.所以|OC|=|AC|. 查看更多

 

题目列表(包括答案和解析)

 

已知函数.

(Ⅰ)讨论函数的单调性; 

(Ⅱ)设,证明:对任意.

    1.选修4-1:几何证明选讲

    如图,的角平分线的延长线交它的外接圆于点

(Ⅰ)证明:∽△;

(Ⅱ)若的面积,求的大小.

证明:(Ⅰ)由已知条件,可得∠BAE=∠CAD.

因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD.

故△ABE∽△ADC.

(Ⅱ)因为△ABE∽△ADC,所以,即AB·ACAD·AE.

SAB·ACsin∠BAC,且SAD·AE,故AB·ACsin∠BACAD·AE.

则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.

 

查看答案和解析>>

如图,在四面体ABOC中,OCOAOCOB,∠AOB=120°,且OAOBOC=1.

(1)设PAC的中点.证明:在AB上存在一点Q,使PQOA,并计算的值;

(2)求二面角OACB的平面角的余弦值.

 

 

 

查看答案和解析>>

如图,在四面体ABOC中,OCOAOCOB,∠AOB=120°,且OAOBOC=1.
(1)设PAC的中点.证明:在AB上存在一点Q,使PQOA,并计算的值;
(2)求二面角OACB的平面角的余弦值.

查看答案和解析>>

如图,AC是平面  的斜线,且AOaAO与  成60º角,OCÌa,AA′⊥ 于A′,∠AOC=45º,则点A到直线OC的距离是           

查看答案和解析>>

如图,在四面体ABOC中,OCOAOCOB,∠AOB=120°,且OAOBOC=1.

(1)设PAC的中点.证明:在AB上存在一点Q,使PQOA,并计算的值;

(2)求二面角OACB的平面角的余弦值.

查看答案和解析>>


同步练习册答案