知.. 查看更多

 

题目列表(包括答案和解析)

(2013•上海)已知真命题:“函数y=f(x)的图象关于点P(a,b)成中心对称图形”的充要条件为“函数y=f(x+a)-b 是奇函数”.
(1)将函数g(x)=x3-3x2的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数g(x)图象对称中心的坐标;
(2)求函数h(x)=log2
2x4-x
 图象对称中心的坐标;
(3)已知命题:“函数 y=f(x)的图象关于某直线成轴对称图象”的充要条件为“存在实数a和b,使得函数y=f(x+a)-b 是偶函数”.判断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).

查看答案和解析>>

(理科做)已知函数f(x)=x2-ax+3在(0,1)上为减函数,函数g(x)=x2-alnx在区间(1,2)上为增函数.
(1)求实数a的值;
(2)当-1<m<0时,判断方程f(x)=2g(x)+m的解的个数,并说明理由;
(3)设函数y=f(bx)(其中0<b<1)的图象C1与函数y=g(x)的图象C2交于P、Q,过线段PQ的中点作x轴的垂线分别交C1、C2于点M、N.证明:曲线C1在点M处的切线与曲线C2在点N处的切线不平行.

查看答案和解析>>

(2009•嘉定区一模)(理)已知函数f(x)=log2
2
x
1-x
,P1(x1,y1)、P2(x2,y2)是f(x)图象上两点.
(1)若x1+x2=1,求证:y1+y2为定值;
(2)设Tn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求Tn关于n的解析式;
(3)对(2)中的Tn,设数列{an}满足a1=2,当n≥2时,an=4Tn+2,问是否存在角a,使不等式(1-
1
a1
)(1-
1
a2
)
(1-
1
an
)<
sinα
2n+1
对一切n∈N*都成立?若存在,求出角α的取值范围;若不存在,请说明理由.

查看答案和解析>>

(1)在学习函数的奇偶性时我们知道:若函数y=f(x)的图象关于点P(0,0)成中心对称图形,则有函数y=f(x)为奇函数,反之亦然;现若有函数y=f(x)的图象关于点P(a,b)成中心对称图形,则有与y=f(x)相关的哪个函数为奇函数,反之亦然.
(2)将函数g(x)=x3+6x2的图象向右平移2个单位,再向下平移16个单位,求此时图象对应的函数解释式,并利用(1)的性质求函数g(x)图象对称中心的坐标;
(3)利用(1)中的性质求函数h(x)=log2
1-x4x
图象对称中心的坐标,并说明理由.

查看答案和解析>>

(1)在学习函数的奇偶性时我们知道:若函数y=f(x)的图象关于点P(0,0)成中心对称图形,则有函数y=f(x)为奇函数,反之亦然;现若有函数y=f(x)的图象关于点P(a,b)成中心对称图形,则有与y=f(x)相关的哪个函数为奇函数,反之亦然.
(2)将函数g(x)=x3+6x2的图象向右平移2个单位,再向下平移16个单位,求此时图象对应的函数解释式,并利用(1)的性质求函数g(x)图象对称中心的坐标;
(3)利用(1)中的性质求函数h(x)=log2
1-x4x
图象对称中心的坐标,并说明理由.

查看答案和解析>>


同步练习册答案