又AA1AD=A,从而BC⊥侧面A1ABB1. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,AB⊥AC,且AB=1,BC=2,又PA⊥底面ABCD,PA=
2
,又E为边BC上异于B、C的点,且PE⊥ED.
(1)求四棱锥P-ABCD的体积;
(2)求A到平面PED的距离.

查看答案和解析>>

四棱锥A-BCDE的侧面ABC是等边三角形,EB⊥平面ABC,DC⊥平面ABC,BE=1,BC=CD=2,F是棱AD的中点.
(1)求证:EF∥平面ABC;
(2)求四棱锥A-BCDE的体积.

查看答案和解析>>

(2013•湖北)如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为A1A2=d1.同样可得在B,C处正下方的矿层厚度分别为B1B2=d2,C1C2=d3,且d1<d2<d3.过AB,AC的中点M,N且与直线AA2平行的平面截多面体A1B1C1-A2B2C2所得的截面DEFG为该多面体的一个中截面,其面积记为S
(Ⅰ)证明:中截面DEFG是梯形;
(Ⅱ)在△ABC中,记BC=a,BC边上的高为h,面积为S.在估测三角形ABC区域内正下方的矿藏储量(即多面体A1B1C1-A2B2C2的体积V)时,可用近似公式V=S-h来估算.已知V=
13
(d1+d2+d3)S,试判断V与V的大小关系,并加以证明.

查看答案和解析>>

14、在平面几何中,有射影定理:“在△ABC中,AB⊥AC,点A在BC边上的射影为D,有AB2=BD•BC.”类比平面几何定理,研究三棱锥的侧面面积与射影面积、底面面积的关系,可以得出的正确结论是:“在三棱锥A-BCD中,AD⊥平面ABC,点A在底面BCD上的射影为O,则有
S△ABC2=S△BCO•S△BCD

查看答案和解析>>

一个质点从A上出发依次沿图中线段到达B、C、D、E、F、G、H、I、J各点,最后又回到A(如图所示),其中:AB⊥BC,AB∥CD∥EF∥HG∥IJ,BC∥DE∥FG∥HI∥JA.欲知此质点所走路程,至少需要测量n条线段的长度,则n的值为
3
3

查看答案和解析>>


同步练习册答案