又平面PBE.所以平面PBE⊥平面PAB. (Ⅱ)延长AD.BE相交于点F.连结PF.过点A作AH⊥PB于H.由(Ⅰ)知平面PBE⊥平面PAB,所以AH⊥平面PBE.在Rt△ABF中.因为∠BAF=60°.所以.AF=2AB=2=AP.在等腰Rt△PAF中.取PF的中点G.连接AG.则AG⊥PF.连结HG.由三垂线定理的逆定理得.PF⊥HG.所以∠AGH是平面PAD和平面PBE所成二面角的平面角. 查看更多

 

题目列表(包括答案和解析)

精英家教网在四棱锥P-ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,底面ABCD是边长为2的菱形,∠BAD=60°,E是AD的中点,F是PC的中点.
(1)求证:BE⊥平面PAD;
(2)求证:EF∥平面PAB;
(3)求直线EF与平面PBE所成角的余弦值.

查看答案和解析>>

精英家教网如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=
3

(1)证明:平面PBE⊥平面PAB;
(2)求直线PA与平面 BEP所成的角.

查看答案和解析>>

(2009•枣庄一模)如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=
3

(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求二面角A-BE-P的大小.

查看答案和解析>>

精英家教网如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.

查看答案和解析>>

如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.

(Ⅰ)证明:平面PBE⊥平面PAB;

(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.

 

 

 

查看答案和解析>>


同步练习册答案