查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)有一问题,在半小时内,甲能解决它的概率是0.5,乙能解决它的概率是

 如果两人都试图独立地在半小时内解决它,计算:w.w.w.k.s.5.u.c.o.m      

   (1)两人都未解决的概率;

   (2)问题得到解决的概率。

查看答案和解析>>

(本小题满分13分)  已知是等比数列, ;是等差数列, , .

(1) 求数列的通项公式;

(2) 设+…+,,其中,…试比较的大小,并证明你的结论.

查看答案和解析>>

(本小题满分13分) 现有一批货物由海上从A地运往B地,已知货船的最大航行速度为35海里/小时,A地至B地之间的航行距离约为500海里,每小时的运输成本由燃料费和其余费用组成,轮船每小时的燃料费用与轮船速度的平方成正比(比例系数为0.6),其余费用为每小时960元.

(1)把全程运输成本y(元)表示为速度x(海里/小时)的函数;

(2)为了使全程运输成本最小,轮船应以多大速度行驶?

查看答案和解析>>

(本小题满分13分)

如图,ABCD的边长为2的正方形,直线l与平面ABCD平行,g和F式l上的两个不同点,且EA=ED,FB=FC, 是平面ABCD内的两点,都与平面ABCD垂直,

(Ⅰ)证明:直线垂直且平分线段AD:w.w.w.k.s.5.u.c.o.m       

(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面

体ABCDEF的体积。

 

查看答案和解析>>

(本小题满分13分)两个人射击,甲射击一次中靶概率是p1,乙射击一次中靶概率是p2,已知 , 是方程x2-5x + 6 = 0的根,若两人各射击5次,甲的方差是 .(1) 求 p1p2的值;(2) 两人各射击2次,中靶至少3次就算完成目的,则完成目的的概率是多少?(3) 两人各射击一次,中靶至少一次就算完成目的,则完成目的的概率是多少?

查看答案和解析>>

一、 C B C B B AC D A B    C D

二、13.           14.              15.         16.3

三、17(Ⅰ)

            = =

得,

.

故函数的零点为.         ……………………………………6分

(Ⅱ)由

.又

       

         , 

                   ……………………………………12分

18. 由三视图可知:,底面ABCD为直角梯形,, BC=CD=1,AB=2

(Ⅰ)∵  PB⊥DA,梯形ABCD中,PB=BC=CD=1,AB=2 ∴BD=

又可得DA=,∴DA⊥BD ,∴DA⊥平面PDB,

∴  AD⊥PD                                   ……………………………4分

 

 (Ⅱ)  CM∥平面PDA  理由如下:

取PB中点N,连结MN,DN,可证MN∥CD且MN=CD,∴CM∥DN,∴CM∥平面PDA

                                                                 …………8分

 (Ⅲ)            

                                                            ……………12分

19. (Ⅰ)九年级(1)班应抽取学生10名; ………………………2分

(Ⅱ)通过计算可得九(1)班抽取学生的平均成绩为16.5,九(2)班抽取学生的平均成绩为17.2.由此可以估计九(1)班学生的平均成绩为16.5, 九(2)班学生的平均成绩为      17.2                                                     ………………………6分

(Ⅲ)基本事件总数为15,满足条件的事件数为9 ,故所求事件的概率为

………………………………12分

20. (Ⅰ)证明 设

相减得  

注意到  

有        

即                           …………………………………………5分

(Ⅱ)①设

由垂径定理,

即       

化简得  

轴平行时,的坐标也满足方程.

故所求的中点的轨迹的方程为

    …………………………………………8分

②      假设过点P作直线与有心圆锥曲线交于两点,且P为的中点,则

         

由于 

直线,即,代入曲线的方程得

             

            

故这样的直线不存在.                      ……………………………………12分

21.(Ⅰ)函数的定义域为

由题意易知,   得    ;

                             当时,时,

故函数的单调增区间为,单调减区间为.   …………………………6分

   (Ⅱ)

①     当时,递减,无极值.

②     当时,由

时,时,

时,函数的极大值为

;

函数无极小值.                                 …………………………13分

22.(Ⅰ)            

                          …………………………………………4分

(Ⅱ) ,

          ……………………………8分

 (Ⅲ)假设

,可求

故存在,使恒成立.

                                   ……………………………………13分

 

 

 

 

 


同步练习册答案