题目列表(包括答案和解析)
(本大题18分)
阅读下面所给材料:已知数列{an},a1=2,an=3an–1+2,求数列的通项an。
解:令an=an–1=x,则有x=3x+2,所以x= –1,故原递推式an=3an–1+2可转化为:
an+1=3(an–1+1),因此数列{an+1}是首项为a1+1,公比为3的等比数列。
根据上述材料所给出提示,解答下列问题:
已知数列{an},a1=1,an=3an–1+4,
(1)求数列的通项an;并用解析几何中的有关思想方法来解释其原理;
(2)若记Sn=
,求
Sn;
(3)若数列{bn}满足:b1=10,bn+1=100
,利用所学过的知识,把问题转化为可以用阅读材料的提示,求出解数列{bn}的通项公式bn。
已知数列
中,
,
,数列
中,
,且点
在直线
上。
(1)求数列
的通项公式;
(2)求数列
的前
项和
;
(3)若
,求数列
的前
项和
;
【解析】第一问中利用数列的递推关系式![]()
,因此得到数列
的通项公式;
第二问中,
在
即为:![]()
即数列
是以
的等差数列
得到其前n项和。
第三问中,
又
![]()
,利用错位相减法得到。
解:(1)![]()
即数列
是以
为首项,2为公比的等比数列
![]()
……4分
(2)
在
即为:![]()
即数列
是以
的等差数列
![]()
……8分
(3)
又
![]()
![]()
①
②
①- ②得到
![]()
在本次数学期中考试试卷中共有10道选择题,每道选择题有4个选项,其中只有一个是正确的。评分标准规定:“每题只选一项,答对得5分,不答或答错得0分”.某考生每道题都给出一个答案, 且已确定有7道题的答案是正确的,而其余题中,有1道题可判断出两个选项是错误的,有一道可以判断出一个选项是错误的,还有一道因不了解题意只能乱猜。试求出该考生:
(1)选择题得满分(50分)的概率;
(2)选择题所得分数
的数学期望。
【解析】第一问总利用独立事件的概率乘法公式得分为50分,10道题必须全做对.在其余的3道题中,有1道题答对的概率为
,有1道题答对的概率为
,还有1道答对的概率为
,
所以得分为50分的概率为: ![]()
第二问中,依题意,该考生得分的范围为{35,40,45,50}
得分为35分表示只做对了7道题,其余各题都做错,
所以概率为
得分为40分的概率为:
同理求得,得分为45分的概率为:
得分为50分的概率为:![]()
得到分布列和期望值。
解:(1)得分为50分,10道题必须全做对.在其余的3道题中,有1道题答对的概率为
,有1道题答对的概率为
,还有1道答对的概率为
,
所以得分为50分的概率为:
…………5分
(2)依题意,该考生得分的范围为{35,40,45,50} …………6分
得分为35分表示只做对了7道题,其余各题都做错,
所以概率为
…………7分
得分为40分的概率为:
…………8分
同理求得,得分为45分的概率为:
…………9分
得分为50分的概率为:
…………10分
所以得分
的分布列为
|
|
35 |
40 |
45 |
50 |
|
|
|
|
|
|
数学期望![]()
已知数列
的前
项和为
,且
(
N*),其中
.
(Ⅰ) 求
的通项公式;
(Ⅱ) 设
(
N*).
①证明:
;
② 求证:
.
【解析】本试题主要考查了数列的通项公式的求解和运用。运用
关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到
,②由于
,
所以
利用放缩法,从此得到结论。
解:(Ⅰ)当
时,由
得
. ……2分
若存在
由
得
,
从而有
,与
矛盾,所以
.
从而由
得
得
. ……6分
(Ⅱ)①证明:![]()
证法一:∵
∴![]()
∴
∴
.…………10分
证法二:
,下同证法一.
……10分
证法三:(利用对偶式)设
,
,
则
.又
,也即
,所以
,也即
,又因为
,所以
.即
………10分
证法四:(数学归纳法)①当
时,
,命题成立;
②假设
时,命题成立,即
,
则当
时,![]()
![]()
即![]()
即![]()
故当
时,命题成立.
综上可知,对一切非零自然数
,不等式②成立. ………………10分
②由于
,
所以
,
从而
.
也即![]()
如图所示的长方体
中,底面
是边长为
的正方形,
为
与
的交点,
,
是线段
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)求二面角
的大小.
【解析】本试题主要考查了线面平行的判定定理和线面垂直的判定定理,以及二面角的求解的运用。中利用
,又
平面
,
平面
,∴
平面
由
,
,又
,∴
平面
.
可得证明
(3)因为∴
为面
的法向量.∵
,
,
∴
为平面
的法向量.∴利用法向量的夹角公式,
,
∴
与
的夹角为
,即二面角
的大小为
.
方法一:解:(Ⅰ)建立如图所示的空间直角坐标系.连接
,则点
、
,
![]()
∴
,又点
,
,∴![]()
∴
,且
与
不共线,∴
.
又
平面
,
平面
,∴
平面
.…………………4分
(Ⅱ)∵
,![]()
∴
,
,即
,
,
又
,∴
平面
. ………8分
(Ⅲ)∵
,
,∴
平面
,
∴
为面
的法向量.∵
,
,
∴
为平面
的法向量.∴
,
∴
与
的夹角为
,即二面角
的大小为![]()
专题一数与式的运算参考答案
例1 (1)解法1:由
,得
;
①若
,不等式可变为
,即
; ②若
,不等式可变为
,即
,解得:
.综上所述,原不等式的解为
.
解法2:
表示x轴上坐标为x的点到坐标为2的点之间的距离,所以不等式
的几何意义即为x轴上坐标为x的点到坐标为2的点之间的距离小于1,观察数轴可知坐标为x的点在坐标为3的点的左侧,在坐标为1的点的右侧.所以原不等式的解为
.
解法3:
,所以原不等式的解为
.
(2)解法一:由
,得
;由
,得
;
①若
,不等式可变为
,即
>4,解得x<0,又x<1,∴x<0;②若
,不等式可变为
,即1>4,∴不存在满足条件的x;
③若
,不等式可变为
,即
>4, 解得x>4.又x≥3,∴x>4.
综上所述,原不等式的解为x<0,或x>4.
解法二:如图,
表示x轴上坐标为x的点P到坐标为1的点A之间的距离|PA|,即|PA|=|x-1|;|x-3|表示x轴上点P到坐标为2的点B之间的距离|PB|,即|PB|=|x-3|.
所以,不等式
>4的几何意义即为|PA|+|PB|>4.由|AB|=2,
可知点P 在点C(坐标为0)的左侧、或点P在点D(坐标为4)的右侧.
所以原不等式的解为x<0,或x>4.
例2(1)解:原式=


说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列.
(2)原式=
(3)原式=
(4)原式=

例3解:

原式=
例4解:
原式=
①

②,把②代入①得原式=
例5解:(1)原式=
(2)原式=
说明:注意性质
的使用:当化去绝对值符号但字母的范围未知时,要对字母的取值分类讨论.
(3)原式=
(4) 原式=
例6解:
原式=
说明:有关代数式的求值问题:(1)先化简后求值;(2)当直接代入运算较复杂时,可根据结论的结构特点,倒推几步,再代入条件,有时整体代入可简化计算量.
【巩固练习】
1.
2.
3.
或
4.
5.
6.
专题二因式分解答案
例1分析:(1) 中应先提取公因式再进一步分解;(2)
中提取公因式后,括号内出现
,可看着是
或
.
解:(1)
.
(2) 

例2(1)分析:按照原先分组方式,无公因式可提,需要把括号打开后重新分组,然后再分解因式.
解:


(2)分析:先将系数2提出后,得到
,其中前三项作为一组,它是一个完全平方式,再和第四项形成平方差形式,可继续分解因式.
解:

例5 解: 



【巩固练习】
1.
.
2.
;
3.
其他情况如下:
;
.
4.
专题三一元二次方程根与系数的关系习题答案
例1解:∵
,∴(1)
; (2)
; (3)
;(4)
.
例2解:可以把所给方程看作为关于
的方程,整理得:
由于
是实数,所以上述方程有实数根,因此:
,
代入原方程得:
.综上知:
例3解:由题意,根据根与系数的关系得:
(1) 
(2) 
(3) 
(4) 
说明:利用根与系数的关系求值,要熟练掌握以下等式变形:
,
,
,
等等.韦达定理体现了整体思想.
【巩固练习】
1. A; 2.A; 3.
; 4.
; 5.
(1)当
时,方程为
,有实根;(2) 当
时,
也有实根.6.(1)
; (2)
.
专题四 平面直角坐标系、一次函数、反比例函数参考答案
例1 解:(1)因为
、
关于x轴对称,它们横坐标相同,纵坐标互为相反数,所以
,
,则
、
.
(2)因为
、
关于y轴对称,它们横坐标互为相反数,纵坐标相同,所以,
,
,则
、
.
(3)因为
、
关于原点对称,它们的横纵坐标都互为相反数,所以
,
,则
、
.
例2分析:因为直线过第一、三象限,所以可知k>0,又因为b=2,所以直线与y轴交于(0,2),即可知OB=2,而ΔAOB的面积为2,由此可推算出OA=2,而直线过第二象限,所以A点坐标为(-2,0),由A、B两点坐标可求出此一次函数的表达式。
解:∵B是直线y=kx+2与y轴交点,∴B(0,2),∴OB=2,
,过第二象限,

【巩固练习】
1. B
2. D(2,2)、C(8,2)、B(6,0). 3.(1)
.(2)点
的坐标是
或
.
专题五二次函数参考答案
例1 解:∵y=-3x2-6x+1=-3(x+1)2+4,∴函数图象的开口向下;对称轴是直线x=-1;顶点坐标为(-1,4);
当x=-1时,函数y取最大值y=4;
当x<-1时,y随着x的增大而增大;当x>-1时,y随着x的增大而减小;
采用描点法画图,选顶点A(-1,4)),与x轴交于点B
和C
,与y轴的交点为D(0,1),过这五点画出图象(如图2-5所示).
说明:从这个例题可以看出,根据配方后得到的性质画函数的图象,可以直接选出关键点,减少了选点的盲目性,使画图更简便、图象更精确.
例2 分析:由于每天的利润=日销售量y×(销售价x-120),日销售量y又是销售价x的一次函数,所以,欲求每天所获得的利润最大值,首先需要求出每天的利润与销售价x之间的函数关系,然后,再由它们之间的函数关系求出每天利润的最大值.
解:由于y是x的一次函数,于是,设y=kx+(B),将x=130,y=70;x=150,y=50代入方程,有
解得 k=-1,b=200.∴ y=-x+200.
设每天的利润为z(元),则z=(-x+200)(x-120)=-x2+320x-24000=-(x-160)2+1600,
∴当x=160时,z取最大值1600.
答:当售价为160元/件时,每天的利润最大,为1600元.
例3 分析:本例中函数自变量的范围是一个变化的范围,需要对a的取值进行讨论.
解:(1)当a=-2时,函数y=x2的图象仅仅对应着一个点(-2,4),所以,函数的最大值和最小值都是4,此时x=-2;
(2)当-2<a<0时,由图2.2-6①可知,当x=-2时,函数取最大值y=4;当x=a时,函数取最小值y=a2;
(3)当0≤a<2时,由图2.2-6②可知,当x=-2时,函数取最大值y=4;当x=0时,函数取最小值y=0;
(4)当a≥2时,由图2.2-6③可知,当x=a时,函数取最大值y=a2;当x=0时,函数取最小值y=0.

说明:在本例中,利用了分类讨论的方法,对a的所有可能情形进行讨论.此外,本例中所研究的二次函数的自变量的取值不是取任意的实数,而是取部分实数来研究,在解决这一类问题时,通常需要借助于函数图象来直观地解决问题.
例4(1)分析:在解本例时,要充分利用题目中所给出的条件――最大值、顶点位置,从而可以将二次函数设成顶点式,再由函数图象过定点来求解出系数a.
解:∵二次函数的最大值为2,而最大值一定是其顶点的纵坐标,∴顶点的纵坐标为2.又顶点在直线y=x+1上,所以,2=x+1,∴x=1.∴顶点坐标是(1,2).设该二次函数的解析式为
,∵二次函数的图像经过点(3,-1),∴
,解得a=-2.
∴二次函数的解析式为
,即y=-2x2+8x-7.
说明:在解题时,由最大值确定出顶点的纵坐标,再利用顶点的位置求出顶点坐标,然后设出二次函数的顶点式,最终解决了问题.因此,在解题时,要充分挖掘题目所给的条件,并巧妙地利用条件简捷地解决问题.
(2) 分析一:由于题目所给的条件中,二次函数的图象所过的两点实际上就是二次函数的图象与x轴的交点坐标,于是可以将函数的表达式设成交点式.
解法一:∵二次函数的图象过点(-3,0),(1,0),∴可设二次函数为y=a(x+3) (x-1) (a≠0),展开,得 y=ax2+2ax-
,由于二次函数图象的顶点到x轴的距离2,∴|-
.所以,二次函数的表达式为y=
,或y=-
.
分析二:由于二次函数的图象过点(-3,0),(1,0),所以,对称轴为直线x=-1,又由顶点到x轴的距离为2,可知顶点的纵坐标为2,或-2,于是,又可以将二次函数的表达式设成顶点式来解,然后再利用图象过点(-3,0),或(1,0),就可以求得函数的表达式.
解法二:∵二次函数的图象过点(-3,0),(1,0),∴对称轴为直线x=-1.又顶点到x轴的距离为2,∴顶点的纵坐标为2,或-2.于是可设二次函数为y=a(x+1)2+2,或y=a(x+1)2-2,由于函数图象过点(1,0),∴0=a(1+1)2+2,或0=a(1+1)2-2.∴a=-
,或a=
.所以,所求的二次函数为y=-
(x+1)2+2,或y=
(x+1)2-2.
说明:上述两种解法分别从与x轴的交点坐标及顶点的坐标这两个不同角度,利用交点式和顶点式来解题,在今后的解题过程中,要善于利用条件,选择恰当的方法来解决问题.
(3)解:设该二次函数为y=ax2+bx+c(a≠0).由函数图象过点(-1,-22),(0,-8),(2,8),可得
解得 a=-2,b=12,c=-8.所以,所求的二次函数为y=-2x2+12x-8.
【巩固练习】
1.(1)D (2)C (3)D 2.(1)y=x2+x-2 (2)y=-x2+2x+3
3.(1)
.(2)
.
(3)
.(4)
4.当长为
5.(1)函数f(x)的解析式为
(2)函数y的图像如图所示
(3)由函数图像可知,函数y的取值范围是0<y≤2.
专题六二次函数的最值问题参考答案
例1分析:由于函数
和
的自变量x的取值范围是全体实数,所以只要确定它们的图象有最高点或最低点,就可以确定函数有最大值或最小值.
解:(1)因为二次函数
中的二次项系数2>0,所以抛物线
有最低点,即函数有最小值.因为
=
,所以当
时,函数
有最小值是
.
(2)因为二次函数
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com