解:(1)设. 查看更多

 

题目列表(包括答案和解析)

解:(1)如图①AH=AB

(2)数量关系成立.如图②,延长CB至E,使BE=DN

∵ABCD是正方形

∴AB=AD,∠D=∠ABE=90°

∴Rt△AEB≌Rt△AND

∴AE=AN,∠EAB=∠NAD

∴∠EAM=∠NAM=45°

∵AM=AM

∴△AEM≌△ANM

∵AB、AH是△AEM和△ANM对应边上的高,

∴AB=AH

(3)如图③分别沿AM、AN翻折△AMH和△ANH,

得到△ABM和△AND

∴BM=2,DN=3,∠B=∠D=∠BAD=90°

分别延长BM和DN交于点C,得正方形ABCE.

由(2)可知,AH=AB=BC=CD=AD.                          

  设AH=x,则MC=,  NC=                             图②

在Rt⊿MCN中,由勾股定理,得

                                    

解得.(不符合题意,舍去)

∴AH=6.

查看答案和解析>>

解:(1)如图,互相垂直平分.          (1分)

证明如下:连结

//

∴四边形是平行四边形.          (2分)

∵∠=90º,的中点,

,                                          (2分)

∴四边形是菱形.                                        (1分)

互相垂直平分.

解:(2)设,则.         (2分)

在Rt△中,∵,                           (1分)

.                                         (1分)

                         (1分)

.                                                 (2分)

查看答案和解析>>

解:(1)由抛物线C1得顶点P的坐标为(2,5)………….1分

∵点A(-1,0)在抛物线C1上∴.………………2分

(2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G..

∵点P、M关于点A成中心对称,

∴PM过点A,且PA=MA..

∴△PAH≌△MAG..

∴MG=PH=5,AG=AH=3.

∴顶点M的坐标为(,5).………………………3分

∵抛物线C2与C1关于x轴对称,抛物线C3由C2平移得到

∴抛物线C3的表达式.  …………4分

(3)∵抛物线C4由C1绕x轴上的点Q旋转180°得到

∴顶点N、P关于点Q成中心对称.

 由(2)得点N的纵坐标为5.

设点N坐标为(m,5),作PH⊥x轴于H,作NG⊥x轴于G,作PR⊥NG于R.

∵旋转中心Q在x轴上,

∴EF=AB=2AH=6.

 ∴EG=3,点E坐标为(,0),H坐标为(2,0),R坐标为(m,-5).

根据勾股定理,得

     

  

       

①当∠PNE=90º时,PN2+ NE2=PE2

解得m=,∴N点坐标为(,5)

②当∠PEN=90º时,PE2+ NE2=PN2

解得m=,∴N点坐标为(,5).

③∵PN>NR=10>NE,∴∠NPE≠90º  ………7分

综上所得,当N点坐标为(,5)或(,5)时,以点P、N、E为顶点的三角形是直角三角形.…………………………………………………………………………………8分

查看答案和解析>>

解:(1)A(-1,0),B(3,0),C(0,3).·················· 2分

抛物线的对称轴是:x=1.······················· 3分

(2)①设直线BC的函数关系式为:y=kx+b

B(3,0),C(0,3)分别代入得:

解得:k= -1,b=3.

所以直线BC的函数关系式为:

x=1时,y= -1+3=2,∴E(1,2).

时,

Pmm+3).·························· 4分

中,当时, 

时,········· 5分

∴线段DE=4-2=2,线段···· 6分

∴当时,四边形为平行四边形.

解得:(不合题意,舍去).

因此,当时,四边形为平行四边形.··········· 7分

②设直线轴交于点,由可得:

························ 8分

·········· 9分

查看答案和解析>>

解:(1)点C的坐标为.

∵ 点A、B的坐标分别为

            ∴ 可设过ABC三点的抛物线的解析式为.   

            将代入抛物线的解析式,得.

            ∴ 过ABC三点的抛物线的解析式为.

(2)可得抛物线的对称轴为,顶点D的坐标为   

,设抛物线的对称轴与x轴的交点为G.

直线BC的解析式为.

设点P的坐标为.

解法一:如图8,作OPAD交直线BC于点P

连结AP,作PMx轴于点M.

OPAD

∴ ∠POM=∠GAD,tan∠POM=tan∠GAD.

  ∴ ,即.

  解得.  经检验是原方程的解.

  此时点P的坐标为.

但此时OMGA.

  ∵

      ∴ OPAD,即四边形的对边OPAD平行但不相等,

      ∴ 直线BC上不存在符合条件的点P. - - - - - - - - - - - - - - - - - - - - - 6分

            解法二:如图9,取OA的中点E,作点D关于点E的对称点P,作PNx轴于

N. 则∠PEO=∠DEAPE=DE.

可得△PEN≌△DEG

,可得E点的坐标为.

NE=EG= ON=OE-NE=NP=DG=.

∴ 点P的坐标为.∵ x=时,

∴ 点P不在直线BC上.

                   ∴ 直线BC上不存在符合条件的点P .

 


(3)的取值范围是.

查看答案和解析>>


同步练习册答案