题目列表(包括答案和解析)
一自来水厂用蓄水池通过管道向所管辖区域供水.某日凌晨,已知蓄水池有水9千吨,水厂计划在当日每小时向蓄水池注入水2千吨,且每
小时通过管道向所管辖区域供水
千吨.
(1)多少小时后,蓄水池存水量最少?
(2)当蓄水池存水量少于3千吨时,供水就会出现紧张现象,那么当日出现这种情况的时间有多长?
【解析】第一问中(1)设
小时后,蓄水池有水
千吨.依题意,
当
,即
(小时)时,蓄水池的水量最少,只有1千吨
第二问依题意,
解得:![]()
解:(1)设
小时后,蓄水池有水
千吨.………………………………………1分
依题意,
…………………………………………4分
当
,即
(小时)时,蓄水池的水量最少,只有1千吨. ………2分
(2)依题意,
………………………………………………3分
解得:
. …………………………………………………………………3分
所以,当天有8小时会出现供水紧张的情况
在平面直角坐标系
中,曲线
与坐标轴的交点都在圆
上.
(1)求圆
的方程;
(2)若圆
与直线
交于
、
两点,且
,求
的值.
【解析】本试题主要是考查了直线与圆的位置关系的运用。
(1)曲线
与
轴的交点为(0,1),
与
轴的交点为(3+2
,0),(3-2
,0) 故可设
的圆心为(3,t),则有32+(t-1)2=(2
)2+t2,解得t=1.
(2)因为圆
与直线
交于
、
两点,且
。联立方程组得到结论。
已知奇函数
时,取极小值![]()
![]()
![]()
(1)求
的解析式;
(2)试判断:当
的图象上是否存在两点,使这两点处的切线的夹角等于45°
(3)试判断方程
上是否有解?若有,指出解的个数,若没有.说明理由.
已知向量
(
),向量
,
,
且![]()
![]()
.
(Ⅰ)求向量
;
(Ⅱ)若
,
,求
.
【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。
(1)问中∵
,∴
,…………………1分
∵
,得到三角关系是
,结合
,解得。
(2)由
,解得
,
,结合二倍角公式
,和
,代入到两角和的三角函数关系式中就可以求解得到。
解析一:(Ⅰ)∵
,∴
,…………1分
∵
,∴
,即
① …………2分
又
② 由①②联立方程解得,
,
5分
∴
……………6分
(Ⅱ)∵
即
,
, …………7分
∴
,
………8分
又∵
, ………9分
, ……10分
∴
.
解法二: (Ⅰ)
,…………………………………1分
又
,∴
,即
,①……2分
又
②
将①代入②中,可得
③ …………………4分
将③代入①中,得
……………………………………5分
∴
…………………………………6分
(Ⅱ) 方法一
∵
,
,∴
,且
……7分
∴
,从而
. …………………8分
由(Ⅰ)知
,
; ………………9分
∴
. ………………………………10分
又∵
,∴
,
又
,∴
……11分
综上可得
………………………………12分
方法二∵
,
,∴
,且
…………7分
∴
.
……………8分
由(Ⅰ)知
,
.
…………9分
∴
……………10分
∵
,且注意到
,
∴
,又
,∴
………………………11分
综上可得
…………………12分
(若用
,又∵
∴
,
求圆心在直线y=-2x上,并且经过点A(2,-1),与直线x+y=1相切的圆的方程.
【解析】利用圆心和半径表示圆的方程,首先
设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3, ………4分
和y=-2x联立解得x=1,y=-2,即圆心(1,-2)
∴r=
=
,
故所求圆的方程为:
+
=2
解:法一:
设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3, ………4分
和y=-2x联立解得x=1,y=-2,即圆心(1,-2) ……………………8分
∴r=
=
,
………………………10分
故所求圆的方程为:
+
=2
………………………12分
法二:由条件设所求圆的方程为:
+
=
, ………………………6分
解得a=1,b=-2,
=2
………………………10分
所求圆的方程为:
+
=2
………………………12分
其它方法相应给分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com