题目列表(包括答案和解析)
(07年北京卷理)(本小题共13分)
如图,有一块半椭圆形钢板,其半轴长为
,短半轴长为
,计划将此钢板切割成等腰梯形的形状,下底
是半椭圆的短轴,上底
的端点在椭圆上,记
,梯形面积为
.
(I)求面积
以
为自变量的函数式,并写出其定义域;
(II)求面积
的最大值.
![]()
(07年北京卷)(本小题共13分)
数列
中,
,
(
是常数,
),且
成公比不为
的等比数列.
(I)求
的值;
(II)求
的通项公式.
(07年北京卷理)(本小题共13分)
某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.
(I)求合唱团学生参加活动的人均次数;
(II)从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率.
(III)从合唱团中任选两名学生,用
表示这两人参加活动次数之差的绝对值,求随机变量
的分布列及数学期望
.
(08年北京卷理)(本小题共13分)
对于每项均是正整数的数列
,定义变换
,
将数列
变换成数列
![]()
.
对于每项均是非负整数的数列
,定义变换
,
将数列
各项从大到小排列,然后去掉所有为零的项,得到数列
;又定义
.
设
是每项均为正整数的有穷数列,令
.
(Ⅰ)如果数列
为5,3,2,写出数列
;
(Ⅱ)对于每项均是正整数的有穷数列
,证明
;
(Ⅲ)证明:对于任意给定的每项均为正整数的有穷数列
,存在正整数
,当
时,
.
(08年北京卷文)(本小题共13分)
甲、乙等五名奥运志愿者被随机地分到
四个不同的岗位服务,每个岗位至少有一名志愿者.
(Ⅰ)求甲、乙两人同时参加
岗位服务的概率;
(Ⅱ)求甲、乙两人不在同一个岗位服务的概率.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com