查看更多

 

题目列表(包括答案和解析)

(07年北京卷理)(本小题共13分)

如图,有一块半椭圆形钢板,其半轴长为,短半轴长为,计划将此钢板切割成等腰梯形的形状,下底是半椭圆的短轴,上底的端点在椭圆上,记,梯形面积为

(I)求面积为自变量的函数式,并写出其定义域;

(II)求面积的最大值.

查看答案和解析>>

(07年北京卷)(本小题共13分)

数列中,是常数,),且成公比不为的等比数列.

(I)求的值;

(II)求的通项公式.

查看答案和解析>>

(07年北京卷理)(本小题共13分)

某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.

(I)求合唱团学生参加活动的人均次数;

(II)从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率.

(III)从合唱团中任选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望

查看答案和解析>>

(08年北京卷理)(本小题共13分)

对于每项均是正整数的数列,定义变换将数列变换成数列

对于每项均是非负整数的数列,定义变换将数列各项从大到小排列,然后去掉所有为零的项,得到数列;又定义

是每项均为正整数的有穷数列,令

(Ⅰ)如果数列为5,3,2,写出数列

(Ⅱ)对于每项均是正整数的有穷数列,证明

(Ⅲ)证明:对于任意给定的每项均为正整数的有穷数列,存在正整数,当时,

查看答案和解析>>

(08年北京卷文)(本小题共13分)

甲、乙等五名奥运志愿者被随机地分到四个不同的岗位服务,每个岗位至少有一名志愿者.

(Ⅰ)求甲、乙两人同时参加岗位服务的概率;

(Ⅱ)求甲、乙两人不在同一个岗位服务的概率.

查看答案和解析>>


同步练习册答案