题目列表(包括答案和解析)
(08年辽宁卷文)(本小题满分14分)
设函数
在
处取得极值,且
.
(Ⅰ)若a=1,求b的值,并求f(x)的单调区间;
(Ⅱ)若a>0,求b的取值范围.
(2012年高考四川卷理科22) (本小题满分14分)
已知
为正实数,
为自然数,抛物线
与
轴正半轴相交于点
,设
为该抛物线在点
处的切线在
轴上的截距。
(Ⅰ)用
和
表示
;
(Ⅱ)求对所有
都有
成立的
的最小值;
(Ⅲ)当
时,比较
与
的大小,并说明理由.
(2009天津卷文)(本小题满分14分)
已知椭圆
(
)的两个焦点分别为
,过点
的直线与椭圆相交于点A,B两点,且![]()
(Ⅰ求椭圆的离心率
(Ⅱ)直线AB的斜率;
(Ⅲ)设点C与点A关于坐标原点对称,直线
上有一点H(m,n)(
)在
的外接圆上,求
的值。
(本小题满分14分)
如图,在半径为
的
圆形(O为圆心)铝皮上截取一块矩形材料OABC,其中点B在圆弧上,点A、C在两半径上,现将此矩形铝皮OABC卷成一个以AB为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设矩形的边长
,圆柱的体积为
.
![]()
(1)写出体积V关于
的函数关系式;
(2)当
为何值时,才能使做出的圆柱形罐子体积V最大?
(2009江苏卷)(本小题满分14分)
如图,在直三棱柱
中,
、
分别是
、
的中点,点
在
上,
。
求证:(1)EF∥平面ABC;
(2)平面![]()
平面
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com