题目列表(包括答案和解析)
(本小题满分12分)已知抛物线
:
和点
,若抛物线
上存在不同两点
、
满足
.
(I)求实数
的取值范围;
(II)当
时,抛物线
上是否存在异于
的点
,使得经过
三点的圆和抛物线
在点
处有相同的切线,若存在,求出点
的坐标,若不存在,请说明理由.
(本小题满分12分)
已知抛物线
:
和点
,若抛物线
上存在不同两点
、
满足
.
(I)求实数
的取值范围;
(II)当
时,抛物线
上是否存在异于
的点
,使得经过
三点的圆和抛物线
在点
处有相同的切线,若存在,求出点
的坐标,若不存在,请说明理由.
(本小题满分12分)已知顶点在坐标原点,焦点在
轴正半轴的抛物线上有一点
,
点到抛物线焦点的距离为1.(1)求该抛物线的方程;(2)设
为抛物线上的一个定点,过
作抛物线的两条互相垂直的弦
,
,求证:
恒过定点
.(3)直线
与抛物线交于
,
两点,在抛物线上是否存在点
,使得△
为以
为斜边的直角三角形.
(本小题满分12分)已知椭圆E的长轴的一个端点是抛物线
的焦点,离心率是![]()
(1)求椭圆E的方程;
(2)过点C(—1,0),斜率为k的动直线与椭圆E相交于A、B两点,请问x轴上是否存在点M,使
为常数?若存在,求出点M的坐标;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com