在ACD中.CA=CD=2.AD=. 查看更多

 

题目列表(包括答案和解析)

在△ABC中,BC=a,CA=b,AB=c;
(1)若∠C为直角,则a2+b2=c2
(2)若∠C为锐角,则a2+b2与c2的关系为:a2+b2>c2
证明:如图过A作AD⊥BC于D,则BD=BC-CD=a-CD
在△ABD中:AD2=AB2-BD2
在△ACD中:AD2=AC2-CD2
AB2-BD2=AC2-CD2
c2-(a-CD)2=b2-CD2
∴a2+b2-c2=2a•CD
∵a>0,CD>0
∴a2+b2-c2>0,所以:a2+b2>c2
(3)若∠C为钝角,试推导a2+b2与c2的关系.
(4)在△ABC中,BC=a=3,CA=b=4,AB=c;若△ABC是钝角三角形,求第三边c的取值范围.

查看答案和解析>>

如图1,在△ACD中,AC=2DCAD=DC  

(1)求∠C的度数;

(2)如图2,延长CAE,使AE=CD,延长CDB,使DB=CEABED交于点O.求证:∠BOD=45º ;

(3)如图3,点FG分别是ACBC上的动点,且SCFG=S四边形AFGB FMBCGNAC,分别交AB于点MN,线段AMMNNB能否始终组成直角三角形?给出你的结论,并说明理由.

查看答案和解析>>

如图1,在△ACD中,AC=2DC,AD=DC.
(1)求∠C的度数;
(2)如图2,延长CA到E,使AE=CD,延长CD到B,使DB=CE,AB、ED交于点O.求证:∠BOD=45°;
(3)如图3,点F、G分别是AC、BC上的动点,且S△CFG=S四边形AFGB,作FM∥BC,GN∥AC,分别交AB于点M、N,线段AM、MN、NB能否始终组成直角三角形?给出你的结论,并说明理由.

查看答案和解析>>

如图1,在△ACD中,AC=2DC,AD=DC.
(1)求∠C的度数;
(2)如图2,延长CA到E,使AE=CD,延长CD到B,使DB=CE,AB、ED交于点O.求证:∠BOD=45°;
(3)如图3,点F、G分别是AC、BC上的动点,且S△CFG=S四边形AFGB,作FM∥BC,GN∥AC,分别交AB于点M、N,线段AM、MN、NB能否始终组成直角三角形?给出你的结论,并说明理由.

查看答案和解析>>

一、阅读理解:
在△ABC中,BC=a,CA=b,AB=c;
(1)若∠C为直角,则
(2)若∠C为为锐角,则的关系为:
证明:如图过A作AD⊥BC于D,则BD=BC-CD=a-CD

在△ABD中:AD2=AB2-BD2
在△ACD中:AD2=AC2-CD2
AB2-BD2= AC2-CD2
c2-(-CD)2= b2-CD2

>0,CD>0
,所以:
(3)若∠C为钝角,试推导的关系.
二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c;若△ABC是钝角三角形,求第三边c的取值范围.

查看答案和解析>>


同步练习册答案