题目列表(包括答案和解析)
设
是定义在区间
上的函数,其导函数为
。如果存在实数
和函数
,其中
对任意的
都有
>0,使得
,则称函数
具有性质
。
(1)设函数![]()
,其中
为实数。
(i)求证:函数
具有性质
; (ii)求函数
的单调区间。
(2)已知函数
具有性质
。给定
设
为实数,
,
,且
,
若|
|<|
|,求
的取值范围。
数学Ⅱ(附加题)
设
是定义在区间
上的函数,其导函数为
。如果存在实数
和函数
,其中
对任意的
都有
>0,使得
,则称函数
具有性质
。
(1)设函数![]()
,其中
为实数。
(i)求证:函数
具有性质
; (ii)求函数
的单调区间。
(2)已知函数
具有性质
。给定
设
为实数,
,
,且
,
若|
|<|
|,求
的取值范围。
设
是由满足下列条件的函数
构成的集合:“①方程
有实数根;②函数
的导数
满足
.”
(Ⅰ)判断函数
是否是集合
中的元素,并说明理由
(Ⅱ)集合
中的元素
具有下面的性质:“若
的定义域为
,则对于任意
,都存在
,使得等式
成立”,试用这一性质证明:方程
只有一个实数根
定义函数
其导函数记为
.
(1)求证:fn(x)≥nx;
(2)设
,求证:0<x0<1;
(3)是否存在区间
使函数h(x)=f3(x)-f2(x)在区间[a,b]上的值域为[ka,kb]?若存在,求出最小的k值及相应的区间[a,b].
已知函数
的定义域是
,
是
的导函数,且
在
内恒成立.
求函数
的单调区间;
若
,求
的取值范围;
(3) 设
是
的零点,
,求证:
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com