22. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知函数

(1)证明:

(2)若数列的通项公式为,求数列 的前项和;w.w.w.k.s.5.u.c.o.m    

(3)设数列满足:,设

若(2)中的满足对任意不小于2的正整数恒成立,

试求的最大值。

查看答案和解析>>

(本小题满分14分)已知,点轴上,点轴的正半轴,点在直线上,且满足. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)当点轴上移动时,求动点的轨迹方程;

(Ⅱ)过的直线与轨迹交于两点,又过作轨迹的切线,当,求直线的方程.

查看答案和解析>>

(本小题满分14分)设函数

 (1)求函数的单调区间;

 (2)若当时,不等式恒成立,求实数的取值范围;w.w.w.k.s.5.u.c.o.m    

 (3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围。

查看答案和解析>>

(本小题满分14分)

已知,其中是自然常数,

(1)讨论时, 的单调性、极值;w.w.w.k.s.5.u.c.o.m    

(2)求证:在(1)的条件下,

(3)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

(本小题满分14分)

设数列的前项和为,对任意的正整数,都有成立,记

(I)求数列的通项公式;

(II)记,设数列的前项和为,求证:对任意正整数都有

(III)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。

查看答案和解析>>

 

一、选择题:本大题共12个小题,每小题5分,共60分.

1-5:DBADC; 6-10:BACDC; 11-12: BC.

二、填空题:本大题共4个小题,每小题4分,共16分.

13.3; 14.-4; 15.1; 16.

三、解答题:本大题共6个小题,共74分.解答要写出文字说明,证明过程或演算步骤.

 

17.解:(Ⅰ)∵l1∥l2

,????????????????????????????????????????????????????????????????????????????????????????? 3分

.????????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)∵

,∴,当且仅当时取"=".??????????? 8分

,∴,?????????????????????????????????????????? 10分

,当且仅当时取"=".

故△ABC面积取最大值为.??????????????????????????????????????????????????????????????????????????? 12分

 

18.解:(Ⅰ)ξ=3表示取出的三个球中数字最大者为3.

①三次取球均出现最大数字为3的概率;??????????????????????????????????????? 1分

②三次取球中有2次出现最大数字3的概率;???????????????????? 3分

③三次取球中仅有1次出现最大数字3的概率.????????????????? 5分

∴P(ξ=3)=P1+P2+P3=.?????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)在ξ=k时, 利用(Ⅰ)的原理可知:

(k=1、2、3、4).???????? 8分

则ξ的概率分布列为:

ξ

1

2

3

4

P

??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 10分

∴ξ的数学期望Eξ=1×+2×+3×+4× = .???????????????????????????????? 12分

 

19.(Ⅰ)证明:∵四边形AA1C1C是菱形,∴AA1=A1C1=C1C=CA=1,∴△AA1B是等边三角形,设O是AA1的中点,连接BO,则BO⊥AA1. 2分

∵侧面ABB1A1⊥AA1C1C,∴BO⊥平面AA1C1C,菱形AA1C1C面积为,知C到AA1的距离为,∴△AA1C1是等边三角形,且C1O⊥AA1,又C1O∩BO=O.

∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.???????????????????????????????????????????? 4分

(Ⅱ)解:由(Ⅰ)知OA、OC1、OB两两垂直,以O为原点,建立如图空间直角坐标系,则.则.?????????????????????????????????????????????????????????????????????????????????????????????? 5分

是平面ABC的一个法向量,

,则.设A1到平面ABC的距离为d.

.??????????????????????????????????????????????????????????????????????????? 8分

(Ⅲ)解:由(Ⅱ)知平面ABC的一个法向量是,又平面ACC1的一个法向量.   9分

.???????????????????????????????????????????????????????????? 11分

∴二面角B-AC-C1的余弦值是.???????????????????????????????????????????????????????????????? 12分

 

20.解:(Ⅰ),对称轴方程为,故函数在[0,1]上为增函数,∴.?????????????????????????????????????????????????????????????????????????????????????? 2分

时,.??????????????????????????????????????????????????????????????????????????????????????????? 3分

            ①

       ②

②-①得,即,?????????????????????????????????????????????????? 4分

,∴数列是以为首项,为公比的等比数列.

,∴.?????????????????????????????????????????????????? 6分

(Ⅱ)∵,∴

???????????????????????????????????????????????????????? 7分

可知:当时,;当时,;当时,

?????????????????????????????????????????????????????????????????????????? 10分

可知存在正整数或6,使得对于任意的正整数n,都有成立.???????????? 12分

 

21.解:(Ⅰ)设

.∵

,∴,∴.??????????????????????????????????????????????????????????????? 2分

则N(c,0),M(0,c),所以

,则

∴椭圆的方程为.??????????????????????????????????????????????????????????????????????????????? 4分

(Ⅱ)∵圆O与直线l相切,则,即,????????????????????????????????? 5分

消去y得

∵直线l与椭圆交于两个不同点,设

,???????????????????????????????????????????????????????????????? 7分

.?????????????????? 8分

.???????????????????????????????????????? 9分

(或).

,则

,则

时单调递增,????????????????????????????????????????????????????????????????????????? 11分

∴S关于μ在区间单调递增,

.??????????????????????????????????????????????????????????????????????????????????????????????????? 12分

(或

∴S关于u在区间单调递增,?????????????????????????????????????????????????????????????????????? 11分

.)????????????????????????????????????????????????????????? 12分

 

22.解:(Ⅰ)因为,则,     1分

时,;当时,

上单调递增;在上单调递减,

∴函数处取得极大值.????????????????????????????????????????????????????????????????????? 2分

∵函数在区间(其中)上存在极值,

解得.????????????????????????????????????????????????????????????????????????????????? 3分

(Ⅱ)不等式,即为,?????????????????????????????????????????? 4分

,∴,??????? 5分

,则,∵,∴上递增,

,从而,故上也单调递增,

.???????????????????????????????????????????????????????????????????????????????????????????????????????????? 7分

(Ⅲ)由(Ⅱ)知:恒成立,即,??????????? 8分

,????????????????????????????????????????????????????? 9分

………

,?????????????????????????????????????????????????????????????????????????????????? 10分

叠加得:

.???????????????????????????????????????????????????????????????????????? 12分

.????????????????????????????????????????????????????????????????????????? 14分

 

 

 

 

 

 

 

 

 

 


同步练习册答案