(1)令.求函数的极值, 查看更多

 

题目列表(包括答案和解析)

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>

已知函数f(x)=
(x2+ax+a)
ex
,(a为常数,e为自然对数的底).
(1)令μ(x)=
1
ex
,a=0,求μ'(x)和f'(x);
(2)若函数f(x)在x=0时取得极小值,试确定a的取值范围;
[理](3)在(2)的条件下,设由f(x)的极大值构成的函数为g(x),试判断曲线g(x)只可能与直线2x-3y+m=0、3x-2y+n=0(m,n为确定的常数)中的哪一条相切,并说明理由.

查看答案和解析>>

已知函数f(x)=
1
3
x3+ax2-bx+1(x∈R,a,b为实数)有极值,且在x=1处的切线与直线x-y+1=0平行.
(1)求实数a的取值范围;
(2)是否存在实数a,使得函数f(x)的极小值为1,若存在,求出实数a的值;若不存在,请说明理由;
(3)设a=
1
2
令g(x)=
f′(x+1)
x
-3,x∈(0,+∞),求证:gn(x)-xn-
1
xn
≥2n-2(n∈N+).

查看答案和解析>>

已知函数f(x)=lnx,g(x)=ax2-bx(a,b∈R),令h(x)=f(x)+g(x).
(Ⅰ)若1和2是函数h(x)的两个极值点,求a,b的值;
(Ⅱ)当a=
12
,b≥2
时,若对任意两个不相等的实数x1,x2∈[1,2],都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求b的值.

查看答案和解析>>

已知函数f(x)=cos
x
4
•cos(
π
2
-
x
4
)•cos(π-
x
2
)

(1)将函数f(x)的解析式化简;
(2)若将函数f(x)在(0,+∞)的所有极值点从小到大排成一数列记为{an},求数列{an}的通项公式;
(3)在(2)的条件下,若令bn=
1
anan+1
,求数列{bn}前n项和Tn

查看答案和解析>>

三、选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

D

A

B

B

D

B

D

A

B

C

B

四、填空题

13.2     14. 31    15.     16.  2.

三、解答题

17.17.解:(Ⅰ)

的最小正周期

(Ⅱ)由解得

的单调递增区间为

18.(Ⅰ)解:设“从甲盒内取出的2个球均为红球”为事件,“从乙盒内取出的2个球均为红球”为事件.由于事件相互独立,且

故取出的4个球均为红球的概率是

(Ⅱ)解:设“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个红球为黑球”为事件,“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件.由于事件互斥,且

故取出的4个红球中恰有4个红球的概率为

19.(Ⅰ)取DC的中点E.

∵ABCD是边长为的菱形,,∴BE⊥CD.

平面, BE平面,∴ BE.

∴BE⊥平面PDC.∠BPE为求直线PB与平面PDC所成的角. 

∵BE=,PE=,∴==.  

(Ⅱ)连接AC、BD交于点O,因为ABCD是菱形,所以AO⊥BD.

平面, AO平面

PD. ∴AO⊥平面PDB.

作OF⊥PB于F,连接AF,则AF⊥PB.

故∠AFO就是二面角A-PB-D的平面角.

∵AO=,OF=,∴=.

20.解:(1)令得所求增区间为

(2)要使当恒成立,只要当

由(1)知

时,是增函数,

时,是减函数,

时,是增函数,

,因此

21. 证明:由是关于x的方程的两根得

是等差数列。

(2)由(1)知

符合上式,

(3)

  ②

①―②得

22. (1)∵

 

,∴

在点附近,当时,;当时,

是函数的极小值点,极小值为

在点附近,当时,;当时,

是函数的极大值点,极大值为

,易知,

是函数的极大值点,极大值为

是函数的极小值点,极小值为

(2)若在上至少存在一点使得成立,

上至少存在一解,即上至少存在一解

由(1)知,

时,函数在区间上递增,且极小值为

∴此时上至少存在一解; 

时,函数在区间上递增,在上递减,

∴要满足条件应有函数的极大值,即

综上,实数的取值范围为

 

 


同步练习册答案