12.下列命题: 查看更多

 

题目列表(包括答案和解析)

下列命题:
①函数y=sin(2x+
π
3
)的单调减区间为[kπ+
π
12
,kπ+
12
],k∈Z;
②函数y=
3
cos2x-sin2x图象的一个对称中心为(
π
6
,0);
③函数y=sin(
1
2
x-
π
6
)在区间[-
π
3
11π
6
]上的值域为[-
3
2
2
2
];
④函数y=cosx的图象可由函数y=sin(x+
π
4
)的图象向右平移
π
4
个单位得到;
⑤若方程sin(2x+
π
3
)-a=0在区间[0,
π
2
]上有两个不同的实数解x1,x2,则x1+x2=
π
6

其中正确命题的序号为
 

查看答案和解析>>

7、下列命题:①?x∈R,x2≥x;②?x∈R,x2≥x;③4≥3;④“x2≠1”的充要条件是“x≠1,或x≠-1”.其中正确命题的个数是(  )

查看答案和解析>>

2、下列命题:
①{2,3,4,2}是由四个元素组成的集合;
②集合{0}表示仅由一个数“零”组成的集合;
③集合{1,2,3}与{3,2,1}是两个不同的集合;
④集合{小于1的正有理数}是一个有限集.其中正确命题是(  )

查看答案和解析>>

7、下列命题:
①至少有一个x使x2+2x+1=0成立;
②对任意的x都有x2+2x+1=0成立;
③对任意的x都有x2+2x+1=0不成立;
④存在x使x2+2x+1=0成立;
其中是全称命题的有(  )

查看答案和解析>>

13、下列命题:
①“a2+b2=0,则a,b全为0”的逆否命题为:“若a,b全不为0,则a2+b2≠0”.
②“x=1”是“x2-3x+2=0”的充分不必要条件.
③若P^q为假命题,则P、q均为假命题.
④对于命题P:存在x∈R使得x2+x+1<0.则﹁P:不存在x∈R使得x2+x+1≥0.
说法错误的是
①③④

查看答案和解析>>

三、选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

D

A

B

B

D

B

D

A

B

C

B

四、填空题

13.2      14. 31    15.     16.  2.

三、解答题

17.解:(Ⅰ)

的最小正周期

(Ⅱ)由解得

的单调递增区间为

18.(I)解:记这两套试验方案在一次试验中均不成功的事件为A,则至少有一套试验成功的事件为    由题意,这两套试验方案在一次试验中不成功的概率均为1-p.

所以,,    从而,

   (II)解:ξ的可取值为0,1,2.

 

所以ξ的分布列为

ξ

0

1

2

P

0.49

0.42

0.09

ξ的数学期望 

19.(Ⅰ)取DC的中点E.

∵ABCD是边长为的菱形,,∴BE⊥CD.

平面, BE平面,∴ BE.

∴BE⊥平面PDC.∠BPE为求直线PB与平面PDC所成的角. 

∵BE=,PE=,∴==.  

(Ⅱ)连接AC、BD交于点O,因为ABCD是菱形,所以AO⊥BD.

平面, AO平面

PD. ∴AO⊥平面PDB.

作OF⊥PB于F,连接AF,则AF⊥PB.

故∠AFO就是二面角A-PB-D的平面角.

∵AO=,OF=,∴=.

20.解: (Ⅰ)恒成立,

所以,.

恒成立,

所以 ,

从而有.

,.

 (Ⅱ)令,

    则

所以上是减函数,在上是增函数,

从而当时,.

所以方程只有一个解.

21.证明:由是关于x的方程的两根得

是等差数列。

(2)由(1)知

符合上式,

(3)

  ②

①―②得

22.解:(1)由题意

   (2)由(1)知:(x>0)

h(x)=px2-2x+p.要使g(x)在(0,+∞)为增函数,只需h(x)在(0,+∞)满足:h(x)≥0恒成立。即px2-2x+p≥0。

上恒成立

所以

   (3)证明:①即证 lnxx+1≤0  (x>0),

.

x∈(0,1)时,k′(x)>0,∴k(x)为单调递增函数;

x∈(1,∞)时,k′(x)<0,∴k(x)为单调递减函数;

x=1为k(x)的极大值点,

∴k(x)≤k(1)=0.

即lnxx+1≤0,∴lnxx-1.

②由①知lnxx-1,又x>0,

 

 


同步练习册答案