(Ⅰ)设.求a和k的值, 查看更多

 

题目列表(包括答案和解析)

设向量
a
=(x,2),
b
=(x+n,2x-1) (n∈N+)
,函数y=
a
b
在[0,1]上的最小值与最大值的和为an,又数列{bn}满足:nb1+(n-1)b2+…+bn=(
9
10
)n-1+(
9
10
)n-2+…+(
9
10
)+1

(1)求证:an=n+1;
(2)求bn的表达式;
(3)cn=-an•bn,试问数列{cn}中,是否存在正整数k,使得对于任意的正整数n,都有cn≤ck成立?证明你的结论.

查看答案和解析>>

设向量
a
=(x,2),
b
=(x+n,2x-1) (n∈N+)
,函数y=
a
b
在[0,1]上的最小值与最大值的和为an,又数列{bn}满足:nb1+(n-1)b2+…+bn=(
9
10
)n-1+(
9
10
)n-2+…+(
9
10
)+1

(1)求证:an=n+1;
(2)求bn的表达式;
(3)cn=-an•bn,试问数列{cn}中,是否存在正整数k,使得对于任意的正整数n,都有cn≤ck成立?证明你的结论.

查看答案和解析>>

设等比数列{an}的首项为a1=2,公比为q(q为正整数),且满足3a3是8a1与a5的等差中项;等差数列{bn}满足2n2-(t+bn)n+
32
bn
=0(t∈R,n∈N*).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ) 若对任意n∈N*,有anbn+1+λanan+1≥bnan+1成立,求实数λ的取值范围;
(Ⅲ)对每个正整数k,在ak和a k+1之间插入bk个2,得到一个新数列{cn}.设Tn是数列{cn}的前n项和,试求满足Tm=2cm+1的所有正整数m.

查看答案和解析>>

(2012•铁岭模拟)设函数f(x)=x2,g(x)=alnx+bx(a>0).
(1)若f(1)=g(1),f′(1)=g′(1),求F(x)=f(x)-g(x)的极小值;
(2)在(1)的结论下,是否存在实常数k和m,使得f(x)≥kx+m和g(x)≤kx+m成立?若存在,求出k和m,若不存在,说明理由.

查看答案和解析>>

设函数f(x)=x2,g(x)=alnx+bx(a>0).
(1)若f(1)=g(1),f′(1)=g′(1),求F(x)=f(x)-g(x)的极小值;
(2)在(1)的结论下,是否存在实常数k和m,使得f(x)≥kx+m和g(x)≤kx+m成立?若存在,求出k和m,若不存在,说明理由.

查看答案和解析>>


同步练习册答案