解:不等式的“极限 即方程.则只需验证x=2.2.5.和3哪个为方程的根.逐一代入.选C. 查看更多

 

题目列表(包括答案和解析)

问题“求方程3x+4x=5x的解”有如下的思路:方程3x+4x=5x可变为(
3
5
)
x
+(
4
5
)
x
=1,考察函数f(x)=(
3
5
)
x
+(
4
5
)
x
可知,f(2)=1,且函数f(x)在R上单调递减,∴原方程有唯一解x=2.仿照此解法可得到不等式:x6-(2x+3)>(2x+3)3-x2的解是
{x|x<-1或x>3}
{x|x<-1或x>3}

查看答案和解析>>

阅读不等式5x≥4x+1的解法:
解:由5x≥4x+1,两边同除以5x可得1≥(
4
5
)x+(
1
5
)x

由于0<
1
5
4
5
<1
,显然函数f(x)=(
4
5
x+(
1
5
x在R上为单调减函数,
f(1)=
4
5
+
1
5
=1
,故当x>1时,有f(x)=(
4
5
x+(
1
5
x<f(x)=1
所以不等式的解集为{x|x≥1}.
利用解此不等式的方法解决以下问题:
(1)解不等式:9x>5x+4x
(2)证明:方程5x+12x=13x有唯一解,并求出该解.

查看答案和解析>>

若不等式mx+的解集为4<xn,则mn的值分别是

A.m=,n=36                                                  B.m=,n=32

C.m=,n=28                                                  D.m=,n=24

本题考查同解不等式的意义,方程与不等式的关系.

查看答案和解析>>

已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)设,若对任意,不等式 恒成立,求实数的取值范围.

【解析】第一问利用的定义域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是

第二问中,若对任意不等式恒成立,问题等价于只需研究最值即可。

解: (I)的定义域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是     ........4分

(II)若对任意不等式恒成立,

问题等价于,                   .........5分

由(I)可知,在上,x=1是函数极小值点,这个极小值是唯一的极值点,

故也是最小值点,所以;            ............6分

当b<1时,

时,

当b>2时,;             ............8分

问题等价于 ........11分

解得b<1 或 或    即,所以实数b的取值范围是 

 

查看答案和解析>>

对于问题:“若关于的不等式的解集为,解关于的不等式”,给出如下一种解法:

解:不等式的解集为,得的解集为,即关于的不等式的解集为

参考上述解法:若关于的不等式的解集为,则关于的不等式的解集为___________

查看答案和解析>>


同步练习册答案