用钢笔或圆珠笔将答案直接写在试卷上. 查看更多

 

题目列表(包括答案和解析)

2008年的汶川大地震震撼了大家的心灵.在地震后大家发现,学习了防震知识且训练有素的学校的师生在地震中伤亡很小;相反的,没有这方面准备的学校损失惨重.为了让大家了解更多的防震避灾的知识,某校举行了一次“防震知识竞赛”,共有800名学生参加了这次竞赛.为了了解本次竞赛成绩的情况,从中抽取了部分学生的成绩进行统计.但是操作人员不小心将频率分布表局部污损,根据这个污损的表格解答下列问题:
(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…,799,
试写出第二组第一位学生的编号;
(2)填充频率分布表的空格(将答案直接填在表格内),并作出频率分布直方图;
(3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约为多少人?

查看答案和解析>>

(12分)为了让学生了解更多“奥运会”知识,某中学举行了一次“奥运知识竞赛”,共有800名学生参加了这次竞赛,为了解本次竞赛成绩情况,从中抽取部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表,解答下列问题:

 

 

(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…,799,试写出第二组第一位学生的编号;

(2)填充频率分布表的空格(将答案直接填在表格内),并作出频率分布直方图;

(3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约为多少人?

 

查看答案和解析>>

(本题满分12分)为了让学生了解更多“奥运会”知识,某中学举行了一次“奥运知识竞赛”,共有800名学生参加了这次竞赛,为了解本次竞赛成绩情况,从中抽取部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表,解答下列问题:

分组

频数

频率

60.5~70.5

 

0.16

70.5~80.5

10

 

80.5~90.5

18

0.36

90.5~100.5

 

 

合计

50

 

(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…,799,试写出第二组第一位学生的编号;

(2)填充频率分布表的空格(将答案直接填在表格内),并作出频率分布直方图;

(3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约为多少人?

 

 

 

查看答案和解析>>

为了让学生了解更多“奥运会”知识,某中学举行了一次“奥运知识竞赛”,共有800名学生参加了这次竞赛,为了解本次竞赛成绩情况,从中抽取部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表,解答下列问题:

分组

频数

频率

60.5~70.5

 

0.16

70.5~80.5

10

80.5~90.5

18

0.36

90.5~100.5

合计

50

(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…,799,试写出第二组第一位学生的编号;

(2)填充频率分布表的空格(将答案直接填在表格内),并作出频率分布直方图;

(3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约为多少人?

查看答案和解析>>

2008年的汶川大地震震撼了大家的心灵.在地震后大家发现,学习了防震知识且训练有素的学校的师生在地震中伤亡很小;相反的,没有这方面准备的学校损失惨重.为了让大家了解更多的防震避灾的知识,某校举行了一次“防震知识竞赛”,共有800名学生参加了这次竞赛.为了了解本次竞赛成绩的情况,从中抽取了部分学生的成绩进行统计.但是操作人员不小心将频率分布表局部污损,根据这个污损的表格解答下列问题:
(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…,799,
试写出第二组第一位学生的编号;
(2)填充频率分布表的空格(将答案直接填在表格内),并作出频率分布直方图;
(3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约为多少人?

查看答案和解析>>

一、选择题(本大题共8小题,每小题5分,共40分)

1.A     2.D     3.D     4.C     5.C    6.B    7.C    8.A

二、填空题(本大题共6小题,每小题5分,共30分)

9.                  10.60                   11.   

12.(1) (2)               13.1,                  14.,

注:两个空的填空题第一个空填对得2分,第二个空填对得3分.

三、解答题(本大题共6小题,共80分)

15.(本小题满分13分)

解:(Ⅰ)设等比数列的公比为,依题意有,    (1)

,将(1)代入得.所以.

于是有                             ………………3分

解得                             ………………6分

是递增的,故.                   ………………7分

所以.                                         ………………8分

   (Ⅱ),.                     ………………10分

故由题意可得,解得.又, …………….12分

所以满足条件的的最小值为13.                           ………………13分

16. (本小题满分13分)

解:(Ⅰ)由,

   所以.                     …………………4分

   于是. …………7分

  

(Ⅱ)由正弦定理可得,

     所以.                                …………………….10分

.         ………………11分

,

解得.即=7 .                                           …………13分

17.(本小题满分14分)

解法一:(Ⅰ)∵正方形,∴

又二面角是直二面角,

⊥平面.

平面

.

是矩形,的中点,

==

=

⊥平面

平面,故平面⊥平面          ……………………5分

 (Ⅱ)如图,由(Ⅰ)知平面⊥平面,且交于,在平面内作,垂足为,则⊥平面.

        ∴∠与平面所成的角.                ……………………7分

∴在Rt△中,=.  

 .  

与平面所成的角为 .                 ………………………9分

   (Ⅲ)由(Ⅱ),⊥平面.作,垂足为,连结,则

        ∴∠为二面角的平面角.             ……………………….11分

∵在Rt△中,=,在Rt△中, .

∴在Rt△中,     ………13分

即二面角的大小为arcsin.          ………………………………14分

 

解法二:

如图,以为原点建立直角坐标系

(0,0,0),(0,2,0),

(0,2,2),,0),

,0,0).

   (Ⅰ) =(,0),=(,0),

         =(0,0,2),

?=(,0)?(,0)=0,

 ? =(,0)?(0,0,2)= 0.

⊥平面,又平面,故平面⊥平面. ……5分

   (Ⅱ)设与平面所成角为.

        由题意可得=(,0),=(0,2,2 ),=(,0).

        设平面的一个法向量为=(,1),

        由.

          .

与平面所成角的大小为.            ……………..9分

   (Ⅲ)因=(1,-1,1)是平面的一个法向量,

        又⊥平面,平面的一个法向量=(,0,0),

        ∴设的夹角为,得

        ∴二面角的大小为.      ………………………………14分

18. (本小题满分13分)

解:(Ⅰ)设事件表示甲运动员射击一次,恰好击中9环以上(含9环),则

.                            ……………….3分

甲运动员射击3次均未击中9环以上的概率为

.                            …………………5分

所以甲运动员射击3次,至少有1次击中9环以上的概率为

.                               ………………6分

    (Ⅱ)记乙运动员射击1次,击中9环以上为事件,则

                        …………………8分

由已知的可能取值是0,1,2.                       …………………9分

;

;

.

的分布列为

0

1

2

0.05

0.35

0.6

                                               ………………………12分

所以

故所求数学期望为.                          ………………………13分

19. (本小题满分14分)

解:(Ⅰ)由已知 ,故,所以直线的方程为.

      将圆心代入方程易知过圆心 .      …………………………3分

        (Ⅱ) 当直线轴垂直时,易知符合题意;        ………………4分

当直线与轴不垂直时,设直线的方程为,由于,

所以,解得.

故直线的方程为.        ………………8分

        (Ⅲ)当轴垂直时,易得,,又

,故. 即.                   ………………10分

的斜率存在时,设直线的方程为,代入圆的方程得

.则

,即,

.又由,

.

.

综上,的值为定值,且.                …………14分

另解一:连结,延长交于点,由(Ⅰ)知.又,

故△∽△.于是有.


同步练习册答案