题目列表(包括答案和解析)
设函数
.
(Ⅰ) 当
时,求
的单调区间;
(Ⅱ) 若
在
上的最大值为
,求
的值.
【解析】第一问中利用函数
的定义域为(0,2),
.
当a=1时,
所以
的单调递增区间为(0,
),单调递减区间为(
,2);
第二问中,利用当
时,
>0, 即
在
上单调递增,故
在
上的最大值为f(1)=a 因此a=1/2.
解:函数
的定义域为(0,2),
.
(1)当
时,
所以
的单调递增区间为(0,
),单调递减区间为(
,2);
(2)当
时,
>0, 即
在
上单调递增,故
在
上的最大值为f(1)=a 因此a=1/2.
某跨国饮料公司对全世界所有人均GDP(即人均纯收入)在0.5-8千美元的地区销售该公司A饮料的情况的调查中发现:人均GDP处在中等的地区对该饮料的销售量最多,然后向两边递减。
(Ⅰ)下列几个模拟函数中(x表示人均GDP,单位:千美元,y表示年人均A饮料的销量,单位;升),用哪个来描述人均A饮料销量与地区的人均GDP的关系更合适?说明理由。
①
, ②
, ③
, ④![]()
(Ⅱ)若人均GDP为1千美元时,年人均A饮料的销量为2升;若人均GDP为4千美元时,年人均A饮料的销量为5升,把(Ⅰ)中你所选的模拟函数求出来,并求在各个地区中,年人均A饮料的销量最多是多少?
(Ⅲ)因为A饮料在B国被检测出杀虫剂的含量超标,受此事件的影响,A饮料在人均GDP低于3千美元和高于6千美元的地区销量下降5%,其它地区的销量下降10%,根据(Ⅱ)所求出的模拟函数,求在各个地区中,年人均A饮料的销量最多为多少?
某跨国饮料公司在对全世界所有人均GDP(即人均纯收入)在0.5千美元~8千美元的地区销售该公司
饮料的情况的调查中发现:人均GDP处在中等的地区对该饮料的销售量最多,然后向两边递减。
(1)下列几个模拟函数中
表示人均GDP,单位:千美元,
表示年人均
饮料的销量,单位:升),用哪个模拟函数来描述人均
饮料销量与地区的人均
关系更合适?说明理由。①
②
,③
,④
。
(2)若人均GDP为1千美元时,年人均
饮料的销量为2升;若人均GDP为4千美元时,年人均
饮料的销量为5升,把(1)中你所选的模拟函数求出来,并求出各个地区中,年人均
饮料的销量最多是多少?
设函数
,其中
为自然对数的底数.
(1)求函数
的单调区间;
(2)记曲线
在点
(其中
)处的切线为
,
与
轴、
轴所围成的三角形面积为
,求
的最大值.
【解析】第一问利用由已知
,所以
,
由
,得
,
所以,在区间
上,
,函数
在区间
上单调递减;
在区间
上,
,函数
在区间
上单调递增;
第二问中,因为
,所以曲线
在点
处切线为
:
.
切线
与
轴的交点为
,与
轴的交点为
,
因为
,所以
,
, 在区间
上,函数
单调递增,在区间
上,函数
单调递减.所以,当
时,
有最大值,此时
,
解:(Ⅰ)由已知
,所以
,
由
,得
, 所以,在区间
上,
,函数
在区间
上单调递减;
在区间
上,
,函数
在区间
上单调递增;
即函数
的单调递减区间为
,单调递增区间为
.
(Ⅱ)因为
,所以曲线
在点
处切线为
:
.
切线
与
轴的交点为
,与
轴的交点为
,
因为
,所以
,
, 在区间
上,函数
单调递增,在区间
上,函数
单调递减.所以,当
时,
有最大值,此时
,
所以,
的最大值为![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com