6.设函数.则其反函数的图象是 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=2+
x
(x≥0),则其反函数f-1(x)的图象是(  )
A、精英家教网
B、精英家教网
C、精英家教网
D、精英家教网

查看答案和解析>>

设函数f(x)的定义域为D,若存在x∈D,使f(x)=x成立,则称以(x,x)为坐标的点为函数f(x)图象上的不动点.
(1)若函数f(x)=图象上有两个关于原点对称的不动点,求a,b应满足的条件;
(2)在(1)的条件下,若a=8,记函数f(x)图象上的两个不动点分别为A、B,点M为函数图象上的另一点,且其纵坐标yM>3,求点M到直线AB距离的最小值及取得最小值时M点的坐标;
(3)下述命题“若定义在R上的奇函数f(x)图象上存在有限个不动点,则不动点的有奇数个”是否正确?若正确,给出证明,并举一例;若不正确,请举一反例说明.

查看答案和解析>>

设函数f(x)=2+(x≥0),则其反函数f-1(x)的图象是( )
A.
B.
C.
D.

查看答案和解析>>

设函数f(x)=2+数学公式(x≥0),则其反函数f-1(x)的图象是


  1. A.
  2. B.
  3. C.
  4. D.

查看答案和解析>>

给出下列四个命题:
①“向量的夹角为锐角”的充要条件是“>0”;
②如果f(x)=lgx,则对任意的x1、x2∈(0,+∞),且x1≠x2,都有
③设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意x∈[a,b],都有|f(x)-g(x)|≤1成立,则称f(x)和g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”。若f(x)=x2-3x+4与g(x)=2x-3在[a,b]上是“密切函数”,则其“密切区间”可以是[2,3];
④记函数y=f(x)的反函数为y=f-1(x),要得到y=f-1(1-x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f-1(1-x)的图象;
其中真命题的序号是(    )。(请写出所有真命题的序号)

查看答案和解析>>

1.D  2.D   3.D   4.D   5.B   6.C   7.C   8.C   9.B   1 0.C  11.A   12.B

13.  14.  15.    16.

提示:

1.D 由,得,所以焦点

2.D 解不等式,得,∴

,故

3.D (法一)当时,推导不出,排除C;故选D。

(法二)∵为非零实数且满足,∴,即,故选D。

4.D ,∴,∴

5.B  两式相减得,∴,∴

6.C  令,解得,∴

7.C  可知四面体的外接球以的中点为球心,故

8.C  由已知有解得

9.B   ,∴,又

     ∴切线的方程为,即,∴点到直线的距离为期不远

10.C  对于A、D,不是对称轴;对于B,电不是偶函数;对于C,符合要求.

11.A   由题意知直线的方程为,当时,,即点是渐近线上一点,∴,即离心率

12. B  应先求出2人坐进20个座位的排法。排除2人相邻的情况即可。

共有11+12=23个座位,去掉前排中间3个不能入坐的座位,还有20个座位,则2人坐入20个座位的排法有种,排除①两人坐前排相邻的12种情况;②两人坐后排相邻的22种情况,∴不同排法的种数有(种).

13.    展开式中的的系数是

14.800    由图知成绩在中的频率为,所以在10000人中成绩在中的人有人。

15.   设棱长均为2,由图知的距离相等,而到平面的距离为,故所成角的正弦值为

               

                                   

                            

                            

                                      

                             

                            

                            

16.    求圆面积的最大值,即求原点到三条直线距离的最小值,由于三个距离分别为,最小值为,所以圆面积的最大值为

17.解:(1)由,得,…2分

,∵,∴,∴

…………………………………………………………………………4分

,∴………………………………………5分

(2)∵,∴

……………8分

,∴,∴……………10分

18.解:(1)证明:延长相交于点,连结

,且,∴的中点,的中点。

的中点,由三角形中位线定理,有

平面平面,∴平面…………………6分

(2)(法一)由(1)知平面平面

的中点,∴取的中点,则有

,∴

平面,∴在平面上的射影,∴

为平面与平面所成二面角的平面角。……………………10分

∵在中,

,即平面与平面所成二面角的大小为。…………12分

(法二)如图,∵平面

平面

的中点为坐标原点,以过且平行的直线为轴,所在的直线为 轴,所在的直线为轴,建立空间直角坐标系。

,则

为平面的法向量,

   

,可得

又平面的法向量为,设所成的角为,………………… 8分

由图可知平面与平面所成二面角为锐角。

∴平面与平面所成二面角的大小为………………………………12分

19.解:(1)由已知得,∵,∴

     ∵是方程的两个根,∴

…………………………………………6分

(2)设两台电器无故障使用时间分别为,则销售利润总和为200元有三种情况:

其概率分别为

∴销售两台这种家用电器的销售利润总和为200元的概率为

………………………12分

20.解:(1)∵,且的图象经过点

由图象可知函数上单调递减,在上单调递增,在 上单调递减,

,解得

………………………6分

(2)要使对都有恒成立,只需即可。

由(1)可知函数上单调递减,在上单调递增,

上单调递减,且,、

故所求的实数的取值范围为………………………12分

21.解:(1)∵,∴,∴

又∵,∴数列是首项为1,公比为3的等比数列,

时,),∴

(2)

时,

时,,①

①-②得:


同步练习册答案