(1)若为中点.求证:平面, 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系xoy中,动点P到定点(0,
3
)距离与到定直线:y=
4
3
3
的距离之比为
3
2
.设动点P的轨迹为C.
(1)写出C的方程;
(2)设直线y=kx+1与交于A,B两点,当|
AB
|=
8
2
5
时,求实数k
的值.
(3)若点A在第一象限,证明:当k>0时,恒有|
OA
|>|
OB
|.

查看答案和解析>>

在平面直角坐标系xOy中,已知动点P(x,y)(y≤0)到点F(0.-2)的距离为d1,到x轴的距离为d2,且d1-d2=2.
(I)求点P的轨迹E的方程;
(Ⅱ)若A、B是(I)中E上的两点,
.
OA
.
OB
=-16
,过A、B分别作直线y=2的垂线,垂足分别P、Q.证明:直线AB过定点M,且
.
MP
.
MQ
为定值.

查看答案和解析>>

在平面直角坐标系xOy中,已知直线l:2
2
x-y+3+8
2
=0
和圆C1:x2+y2+8x+F=0.若直线l被圆C1截得的弦长为2
3

(1)求圆C1的方程;
(2)设圆C1和x轴相交于A、B两点,点P为圆C1上不同于A、B的任意一点,直线PA、PB交y轴于M、N点.当点P变化时,以MN为直径的圆C2是否经过圆C1内一定点?请证明你的结论;
(3)若△RST的顶点R在直线x=-1上,S、T在圆C1上,且直线RS过圆心C1,∠SRT=30°,求点R的纵坐标的范围.

查看答案和解析>>

在平面直角坐标系xOy中有两定点F1(0,
3
)
F2(0,-
3
)
,若动点M满足|
MF1
|+|
MF2
|=4
,设动点M的轨迹为C.
(1)求曲线C的方程;
(2)设直线l:y=kx+t交曲线C于A、B两点,交直线l1:y=k1x于点D,若k•k1=-4,证明:D为AB的中点.

查看答案和解析>>

在平面直角坐标系中,已知曲线C上任意一点P到两个定点F1(-
3
,0)
F2(
3
,0)
的距离之和为4.
(1)求曲线C的方程;
(2)设过(0,-2)的直线l与曲线C交于A、B两点,以线段AB为直径作圆.试问:该圆能否经过坐标原点?若能,请写出此时直线l的方程,并证明你的结论;若不是,请说明理由.

查看答案和解析>>

1.D  2.D   3.D   4.D   5.B   6.C   7.C   8.C   9.B   1 0.C  11.A   12.B

13.  14.  15.    16.

提示:

1.D 由,得,所以焦点

2.D 解不等式,得,∴

,故

3.D (法一)当时,推导不出,排除C;故选D。

(法二)∵为非零实数且满足,∴,即,故选D。

4.D ,∴,∴

5.B  两式相减得,∴,∴

6.C  令,解得,∴

7.C  可知四面体的外接球以的中点为球心,故

8.C  由已知有解得

9.B   ,∴,又

     ∴切线的方程为,即,∴点到直线的距离为期不远

10.C  对于A、D,不是对称轴;对于B,电不是偶函数;对于C,符合要求.

11.A   由题意知直线的方程为,当时,,即点是渐近线上一点,∴,即离心率

12. B  应先求出2人坐进20个座位的排法。排除2人相邻的情况即可。

共有11+12=23个座位,去掉前排中间3个不能入坐的座位,还有20个座位,则2人坐入20个座位的排法有种,排除①两人坐前排相邻的12种情况;②两人坐后排相邻的22种情况,∴不同排法的种数有(种).

13.    展开式中的的系数是

14.800    由图知成绩在中的频率为,所以在10000人中成绩在中的人有人。

15.   设棱长均为2,由图知的距离相等,而到平面的距离为,故所成角的正弦值为

               

                                   

                            

                            

                                      

                             

                            

                            

16.    求圆面积的最大值,即求原点到三条直线距离的最小值,由于三个距离分别为,最小值为,所以圆面积的最大值为

17.解:(1)由,得,…2分

,∵,∴,∴

…………………………………………………………………………4分

,∴………………………………………5分

(2)∵,∴

……………8分

,∴,∴……………10分

18.解:(1)证明:延长相交于点,连结

,且,∴的中点,的中点。

的中点,由三角形中位线定理,有

平面平面,∴平面…………………6分

(2)(法一)由(1)知平面平面

的中点,∴取的中点,则有

,∴

平面,∴在平面上的射影,∴

为平面与平面所成二面角的平面角。……………………10分

∵在中,

,即平面与平面所成二面角的大小为。…………12分

(法二)如图,∵平面

平面

的中点为坐标原点,以过且平行的直线为轴,所在的直线为 轴,所在的直线为轴,建立空间直角坐标系。

,则

为平面的法向量,

   

,可得

又平面的法向量为,设所成的角为,………………… 8分

由图可知平面与平面所成二面角为锐角。

∴平面与平面所成二面角的大小为………………………………12分

19.解:(1)由已知得,∵,∴

     ∵是方程的两个根,∴

…………………………………………6分

(2)设两台电器无故障使用时间分别为,则销售利润总和为200元有三种情况:

其概率分别为

∴销售两台这种家用电器的销售利润总和为200元的概率为

………………………12分

20.解:(1)∵,且的图象经过点

由图象可知函数上单调递减,在上单调递增,在 上单调递减,

,解得

………………………6分

(2)要使对都有恒成立,只需即可。

由(1)可知函数上单调递减,在上单调递增,

上单调递减,且,、

故所求的实数的取值范围为………………………12分

21.解:(1)∵,∴,∴

又∵,∴数列是首项为1,公比为3的等比数列,

时,),∴

(2)

时,

时,,①

①-②得:


同步练习册答案