四位同学在研究函数 f 时.分别给出下面四个结论: ① 函数 f (x) 的值域为 (-1 , 1] ② 若x1≠x2.则一定有f (x1)≠f (x2) ③ 若规定 f1.fn+1(x) = f [ fn(x)].则 fn(x) = 对任意 n∈N* 恒成立. ④对于定义域上的任意x都有你认为上述四个结论中正确的序号是 .三台中学2009年高三下期四月考理科数学试题班级 学号 姓名 总分 题号123456789101112答案 二.填空题:13. ,14. ,15. ,16. 查看更多

 

题目列表(包括答案和解析)

四位同学在研究函数f(x)=
x
1+|x|
(x∈R)
时,分别给出下面四个结论:
①函数 f(x)的图象关于y轴对称;       
②函数f(x)的值域为 (-1,1);
③若x1≠x2,则一定有f(x1)≠f(x2);
④若规定f1(x)=f(x),fn+1(x)=f[fn(x)],则 fn(x)=
x
1+n|x|
对任意n∈N*恒成立.  
你认为上述四个结论中正确的有
②③④
②③④

查看答案和解析>>

四位同学在研究函数f(x)=
x
1+|x|
(x∈R)
时,分别给出下面四个结论:
①函数 f(x)的图象关于y轴对称;       
②函数f(x)的值域为 (-1,1);
③若x1≠x2,则一定有f(x1)≠f(x2);
④若规定f1(x)=f(x),fn+1(x)=f[fn(x)],则 fn(x)=
x
1+n|x|
对任意n∈N*恒成立.  
你认为上述四个结论中正确的有______.

查看答案和解析>>

四位同学在研究函数(x∈R)时,分别给出下面四个结论:
①函数f(x)的值域为(-1,1);
②若x1,x2∈R且x1<x2<0,则一定有
③若x1,x2∈R且x1<x2,则一定有
④若集合M=[a,b],N={y|y=f(x),x∈M},则使M=N成立的有序实数对(a,b)只有一个.
则上述四个结论中正确的是( )
A.①②
B.①③
C.①④
D.②④

查看答案和解析>>

四位同学在研究函数数学公式(x∈R)时,分别给出下面四个结论:
①函数f(x)的值域为(-1,1);
②若x1,x2∈R且x1<x2<0,则一定有数学公式
③若x1,x2∈R且x1<x2,则一定有数学公式
④若集合M=[a,b],N={y|y=f(x),x∈M},则使M=N成立的有序实数对(a,b)只有一个.
则上述四个结论中正确的是


  1. A.
    ①②
  2. B.
    ①③
  3. C.
    ①④
  4. D.
    ②④

查看答案和解析>>

四位同学在研究函数f(x)=(x∈R)时,分别给出下面四个结论:

①函数f(x)的图象关于y轴对称;

②函数f(x)的值域为(-1,1);

③若x1≠x2,则一定有f(x1)≠f(x2);

④若规定f1(x)=f(x),fn+1(x)=f[fn(x)],则fn(x)=对任意n∈N*恒成立.你认为上述四个结论中正确的有________

查看答案和解析>>

一、选择题

20080527

二、填空题  13.4 ;  14.(-∞,-2]∪[1,+∞); 15. 5  ;   16. ② ③

17.解:(1)由正弦定理得,…

   ,因此。……6分

(2)的面积

,所以由余弦定理得

。……………………12分

18.18.解:填湖面积   填湖及排水设备费    水面经济收益   填湖造地后收益

        (亩)      (元)                       

(1)收益不小于支出的条件可以表示为

所以。…………………………3分

显然时,此时所填面积的最大值为亩。…………7分

(2)设该地现在水面m亩,今年填湖造地y亩,

,…………9分

,所以

因此今年填湖造地面积最多只能占现有水面的。………12分

19.(1)∵∠DFH就是二面角G-EF-D的平面角…2分

在Rt△HDF中,DF= PD=1,DH= AD=1   ………4分

∴∠DFH=45°,

即二面角G-EF-D的大小为45°.             …………6分

(2)当点Q是线段PB的中点时,有PQ⊥平面ADQ.…………7分

证明如下:
∵E是PC中点,∴EQ∥BC,又AD∥BC,故EQ∥AD,从而A、D、E、Q四点共面
在Rt△PDC中,PD=DC,E为PC中点
∴PC⊥DE,又∵PD⊥平面ABCD              …………10分
∴AD⊥PC,又AD∩DE=D
∴PC⊥平面ADEQ,即PC⊥平面ADQ.          …………12分
解法二:(1)建立如图所示空间直角坐标系,设平面GEF的一个法向量为n=(x,y,z),则
  取n=(1,0,1)      …………4分
又平面EFD的法向量为m=(1,0,0)
∴cos<m,n> =                 …………6分
∴<m,n>=45°                            …………7分
(2)设=λ(0<λ<1)
则=+=(-2+2λ,2λ,2-2λ)       …………9分
∵AQ⊥PC ó ?=0  ó  2×2λ-2(2-2λ)=0
ó  λ=                                                …………11分
又AD⊥PC,∴PC⊥平面ADQ  ó λ=

ó  点Q是线段PB的中点.                               …………12分
20。解: 设,不妨设

直线的方程:

化简得 .又圆心的距离为1,

 ,           …5分

易知,上式化简得

同理有.         ………8分

所以,则

是抛物线上的点,有,则

.                    ………10分

所以

时,上式取等号,此时

因此的最小值为8.                                    …12分

21.(Ⅰ)当.

              …………………3分

(II)     因为在(0,1]上是增函数,

所以在(0,1]上恒成立,即在(0,1]上恒成立,

 令,………6分

在(0,1]上是单调增函数,所以

所以.                                          …………………8分

(Ⅲ)①当时,由(II)知在(0,1]上是增函数,

所以,解得,与矛盾.…………………10分

②当时,令,

时,是增函数,

时,是减函数.

所以,即

解得

综上,存在,使得当时,f(x)有最大值-6.………………12分

22.解:(Ⅰ)

是以为首项,为公比的等比数列.

. ………4分

(Ⅱ)由(Ⅰ)知

原不等式成立. ………8分

(Ⅲ)由(Ⅱ)知,对任意的,有

. ………10分

, ………12分

原不等式成立.    ………14分