(1)试求的值.并分别写出和用.表示的关系式, 查看更多

 

题目列表(包括答案和解析)

已知复数均为实数,为虚数单位,且对于任意复数

(Ⅰ)试求的值,并分别写出表示的关系式;

(Ⅱ)将()作为点的坐标,()作为点的坐标,上述关系可以看作是坐标平面上点的一个变换:它将平面上的点变到这一平面上的点,当点在直线上移动时,试求点经该变换后得到的点的轨迹方程;

(Ⅲ)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由。

查看答案和解析>>

已知复数均为实数,为虚数单位,且对于任意复数

(1)试求的值,并分别写出表示的关系式;

(2)将()作为点的坐标,()作为点的坐标,上述关系可以看作是坐标平面上点的一个变换:它将平面上的点变到这一平面上的点

当点在直线上移动时,试求点经该变换后得到的点的轨迹方程;

(3)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由。

查看答案和解析>>

已知复数均为实数,为虚数单位,且对于任意复数
(1)试求的值,并分别写出表示的关系式;
(2)将()作为点的坐标,()作为点的坐标,上述关系可以看作是坐标平面上点的一个变换:它将平面上的点变到这一平面上的点
当点在直线上移动时,试求点经该变换后得到的点的轨迹方程;
(3)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由。

查看答案和解析>>

22.已知复数z0=l-mi(m>0),z=x+yi和w=x′+y′i.其中xyx′,y′均为实数.i为虚数单位,且对于任意复数z,有w=·.

(1)试求m的值,并分别写出x′和y′用x、y表示的关系式;

(2)将(x,y)作为点P的坐标,(x′,y′)作为点Q的坐标,上述关系式可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q.

当点P在直线y=x+1上移动时,试求点P经该变换后得到的点Q的轨迹方程.

(3)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在c 该直线上?若存在,试求出所有这些直线;若不存在,则说明理由.

查看答案和解析>>

已知复数z=1-mi(m>0),z=x+yi和,其中x,y,x',y'均为实数,i为虚数单位,且对于任意复数z,有,|w|=2|z|.
(Ⅰ)试求m的值,并分别写出x'和y'用x、y表示的关系式:
(Ⅱ)将(x、y)用为点P的坐标,(x'、y')作为点Q的坐标,上述关系式可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q.已知点P经该变换后得到的点Q的坐标为,试求点P的坐标;
(Ⅲ)若直线y=kx上的任一点经上述变换后得到的点仍在该直线上,试求k的值.

查看答案和解析>>

1、B

2、D

3、A

4、[解法一]设

    而

    又∵在复平面上对应的点在第二、四象限的角平分线上,

    ∴,得.

    ∴.  即;,

    当时,有,即,得.

    当时,同理可得.

    [解法二],∴,

    或  .

    当时,有,即,得.

时,同理可得.

5、解:由

当且仅当时,即时,上式取等号.

所以当时,函数取最大值

6、D

7、解:因为

因为

于是

由此得OP⊥OQ,|OP|=|OQ| .

由此知△OPQ有两边相等且其夹角为直角,故△OPQ为等腰直角三角形。

8、B

9、解:设Z1,Z3对应的复数分别为

依题设得

10、A

11、(1)
(2)

12、

13、解:(Ⅰ)由 

                      

                      

   得.                                          ……4分

   因为 

   所以  .                                               ……6分

  (Ⅱ)因为

   所以  ,而,所以

   ,同理

   由(Ⅰ)知 

   即  

  所以       的实部为,                                                      ……8分

  而的辐角为时,复数的实部为

         

  所以                                                           ……12分

14、C

15、[解](1)由题设,

于是由,                             …(3分)

因此由

得关系式                                 …(5分)

[解](2)设点在直线上,则其经变换后的点满足

,                                    …(7分)

消去,得

故点的轨迹方程为                        …(10分)

[解](3)假设存在这样的直线,∵平行坐标轴的直线显然不满足条件,

∴所求直线可设为,                              …(12分)

[解法一]∵该直线上的任一点,其经变换后得到的点

仍在该直线上,

时,方程组无解,

故这样的直线不存在。                                            …(16分)

时,由

解得

故这样的直线存在,其方程为,                       …(18分)

[解法二]取直线上一点,其经变换后的点仍在该直线上,

,                                            …(14分)

故所求直线为,取直线上一点,其经变换后得到的点仍在该直线上。

,                                     …(16分)

,得

故这样的直线存在,其方程为,           …(18分)

 


同步练习册答案