16.下列结论: 查看更多

 

题目列表(包括答案和解析)

下列结论:①(3)′=0,②(sinx)′=cosx,③(ex)′=ex,④(lnx)′=
1
x
,其中正确的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

下列结论:①已知命题p:?x∈R,tanx=1;命题q:?x∈R,x2-x+1>0.则命题“p∧?q”是假命题;②函数y=
|x|
x2+1
的最小值为
1
2
且它的图象关于y轴对称;③函数f(x)=lnx+2x-6在定义域上有且只有一个零点.其中正确命题的序号为
 
.(把你认为正确的命题序号都填上)

查看答案和解析>>

下列结论:
①当a为任意实数时,直线(a-1)x-y+2a+1=0恒过定点P,则过点P且焦点在y轴上的抛物线的标准方程是x2=
4
3
y

②已知双曲线的右焦点为(5,0),一条渐近线方程为2x-y=0,则双曲线的标准方程是
x2
5
-
y2
20
=1

③抛物线y=ax2(a≠0)的准线方程为y=-
1
4a

④已知双曲线
x2
4
+
y2
m
=1
,其离心率e∈(1,2),则m的取值范围是(-12,0).
其中所有正确结论的个数是
 

查看答案和解析>>

下列结论:
①若命题p:存在x∈R,使得tanx=1;命题q:对任意x∈R,x2-x+1>0,则命题“p且?q”为假命题.
②已知直线l1:ax+3y-1=0,l2:x+by+1=0.则l1⊥l2的充要条件为
ab
=-3

③命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1则x2-3x+2≠0”;
其中正确结论的序号为
 

查看答案和解析>>

下列结论:
①若命题p:?x0∈R,tanx0=1;命题q:?x∈R,x2-x+1>0,则命题“p∧?q”是假命题;
②某校在一次月考中约有1000人参加考试,数学考试的成绩,统计结果显示数字考试成绩在70分到110分之间的人数约为总人数的
3
5
,则此次月考中数学考试成绩不低于110分的学生约有200人;
③在线性回归分析中,残差的平方和越小,说明模型的拟合效果越好;
④对分类变量X与Y,它们的随机变量K2的观测值为k,若k越大,则“X与Y有关系”的把握程度越大,其中结论正确的个数为
(  )
A、4B、3C、2D、1

查看答案和解析>>

 

一、选择题:本大题共12小题,每小题5分,共60分。

ABBD    DABD    BCCA

二、填空题:本大题共4小题,每小题4分,共16分。

13.    14.3    15.    16.①③

三、解答题:本大题共6小题,共74分。解答应写出文字说明、证明过程或演算步骤。

17.解:(I)………2分

    依题意函数

    所以 …………4分

   

   (II)

   

18.解:(I)由题意得:上年度的利润的万元;

    本年度每辆车的投入成本为万元;

    本年度每辆车的出厂价为万元;

    本年度年销售量为 ………………2分

    因此本年度的利润为

   

   (II)本年度的利润为

   

………………7分

(舍去)。  …………9分

19.(I)解:取CE中点P,连结FP、BP,

∵F为CD的中点,

∴FP//DE,且FP=

又AB//DE,且AB=

∴AB//FP,且AB=FP,

∴ABPF为平行四边形,∴AF//BP。…………2分

又∵AF平面BCE,BP平面BCE,

∴AF//平面BCE。 …………4分

   (II)∵△ACD为正三角形,∴AF⊥CD。

∵AB⊥平面ACD,DE//AB,

∴DE⊥平面ACD,又AF平面ACD,

∴DE⊥AF。又AF⊥CD,CD∩DE=D,

∴AF⊥平面CDE。 …………6分

又BP//AF,∴BP⊥平面CDE。又∵BP平面BCE,

∴平面BCE⊥平面CDE。 …………8分

   (III)由(II),以F为坐标原点,FA,FD,FP所在的直线分别为x,y,z轴(如图),建立空间直角坐标系F―xyz.设AC=2,

则C(0,―1,0),………………9分

 ……10分

显然,为平面ACD的法向量。

设平面BCE与平面ACD所成锐二面角为

,即平面BCE与平面ACD所成锐二面角为45°。…………12分

20.(I)证明:当

, …………3分

, …………5分

所以,的等比数列。 …………6分

   (II)解:由(I)知, …………7分

可见,若存在满足条件的正整数m,则m为偶数。 …………9分

21.解:(I)解:由

知点C的轨迹是过M,N两点的直线,故点C的轨迹方程是:

   (II)解:假设存在于D、E两点,并以线段DE为直径的圆都过原点。设

    由题意,直线l的斜率不为零,

    所以,可设直线l的方程为

    代入 …………7分

   

    此时,以DE为直径的圆都过原点。 …………10分

    设弦DE的中点为

   

22.解:(I)函数

     …………1分

     …………2分

    当

    列表如下:

+

0

极大值

    综上所述,当

    当 …………5分

   (II)若函数

    当

    当,故不成立。 …………7分

    当由(I)知,且是极大值,同时也是最大值。

    从而

    故函数 …………10分

   (III)由(II)知,当