题目列表(包括答案和解析)
.幂函数y=(m2-m-1)xm2-2m-3,当x∈(0,+∞)时为减函数,则实数m的值为( )
A.m=2 B.m=-1
C.m=-1或2 D.m≠![]()
.过点P(0,1)且和A(3,3),B(5,-1)的距离相等的直线方程是( )
A.y=1
B.2x+y-1=0
C.y=1或2x+y-1=0
D.2x+y
-1=0或2x+y+1=0
.三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤.
16. (本题满分12分)
已知函数
为偶函数, 且![]()
(1)求
的值;
(2)若
为三角形
的一个内角,求满足
的
的值.
.(本小题满分12分)
某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.
| 视觉记忆能力 | |||||
| 偏低 | 中等 | 偏高 | 超常 | ||
| 听觉 记忆 能力 | 偏低 | 0 | 7 | 5 | 1 |
| 中等 | 1 | 8 | 3 | ||
| 偏高 | 2 | 0 | 1 | ||
| 超常 | 0 | 2 | 1 | 1 | |
“
或
”是“
”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
一、选择题 CAADD ABDAB CB
二、填空题
.
.
.
.
三、解答题
.




的周期为
,最大值为
.
令
,
得
,
.
∴
的单调减区间为
.
.
事件
,
表示甲以
获胜;
表示乙以
获胜,
、
互斥,
∴
.
事件
,
表示甲以
获胜;
表示甲以
获胜,
、
互斥,
∴

延长
、
交于
,则
.
连结
,并延长交
延长线于
,则
,
,
在
中,
为中位线,
,
又
,
∴
.
∵
中,
,
∴
.
即
,又
,
,
∴
,∴
,
∴
为平面
与平面
所成二面角的平面角。
又
,
∴所求二面角大小为
.
.
由
,
,
知
,
,同理
,
.
又
,
∴
构成以
为首项,以
为公比的等比数列。
∴
,即
.





.
.
,且
的图象经过点
和
,
∴
,
为
的两根.
∴

∴
由
解
得
∴
要使对
,不等式
恒成立,
只需
即可.
∵
,
∴
在
上单调递减,在
上单调递增,在
上单调递减.
又
,
,
∴
,
∴
,
解得
,即为
的取值范围.
.
由题意知,椭圆
的焦点
,
,顶点
,
,
∴双曲线
中
,
,
.
∴
的方程为:
.
联立
,得
,
∴
且
,
设
,
,
则
,
∴
.
又
,即
,
∴
,
即
.
∴
,
,
由①②得
的范围为
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com