答卷前将密封线内的项目填写清楚 题号一二三总分1-891011121314151617181920分数 得分评卷人 查看更多

 

题目列表(包括答案和解析)

如图,下面的表格内的数值填写规则如下:先将第1行的所有空格填上1;再把一个首项为1,公比为q的数列{an}依次填入第一列的空格内;其它空格按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规则填写.
第1列 第2列 第3列 第n列
第1行 1 1 1 1
第2行 q
第3行 q2
第n行 qn-1
(1)设第2行的数依次为b1,b2,…,bn,试用n,q表示b1+b2+…+bn的值;
(2)设第3列的数依次为c1,c2,c3,…,cn,求证:对于任意非零实数q,c1+c3>2c2
(3)能否找到q的值,使得(2)中的数列c1,c2,c3,…,cn的前m项c1,c2,…,cm(m≥3)成为等比数列?若能找到,m的值有多少个?若不能找到,说明理由.

查看答案和解析>>

阅读下面一段文字:已知数列{an}的首项a1=1,如果当n≥2时,an-an-1=2,则易知通项an=2n-1,前n项的和Sn=n2.将此命题中的“等号”改为“大于号”,我们得到:数列{an}的首项a1=1,如果当n≥2时,an-an-1>2,那么an>2n-1,且Sn>n2.这种从“等”到“不等”的类比很有趣.由此还可以思考:要证Sn>n2,可以先证an>2n-1,而要证an>2n-1,只需证an-an-1>2(n≥2).结合以上思想方法,完成下题:
已知函数f(x)=x3+1,数列{an}满足a1=1,an+1=f(an),若数列{an}的前n项的和为Sn,求证:Sn≥2n-1.

查看答案和解析>>

(2008•成都二模)(新华网)反兴奋剂的大敌、服药者的宠儿--HGH(人体生长激素),有望在8月的北京奥运会上首次“伏法”.据悉,国际体育界研究近10年仍不见显著成效的HGH检测,日前已取得新的进展,新生产的检测设备有希望在北京奥运会上使用.若组委会计划对参加某项田径比赛的120名运动员的血样进行突击检查,采用如下化验
方法:将所有待检运动员分成若干小组,每组m个人,再把每个人的血样分成两份,化验时将每个小组内的m个人的血样各一份混合在一起进行化验,若结果中不含HGH成分,那么该组的m个人只需化验这一次就算检验合格;如果结果中含有HGH成分,那么需要对该组进行再次检验,即需要把这m个人的另一份血样逐个进行化验,才能最终确定是否检验合格,这时,对这m个人一共需要进行m+1次化验.假定对所有人来说,化验结果中含有HGH成分的概率均为
110
.当m=3时,
(1)求一个小组只需经过一次检验就合格的概率;
(2)设一个小组的检验次数为随机变量ξ,求ξ的分布列及数学期望.

查看答案和解析>>

如图是将二进制数11111(2)化为十进制数的一个程序框图.
(1)将判断框内的条件补充完整;
(2)请用直到型循环结构改写流程图.

查看答案和解析>>

组委会计划对参加某项田径比赛的12名运动员的血样进行突击检验,检查是否含有兴奋剂HGH成分.采用如下检测方法:将所有待检运动员分成4个小组,每组3个人,再把每个人的血样分成两份,化验室将每个小组内的3个人的血样各一份混合在一起进行化验,若结果中不含HGH成分,那么该组的3个人只需化验这一次就算合格;如果结果中含HGH成分,那么需对该组进行再次检验,即需要把这3个人的另一份血样逐个进行化验,才能最终确定是否检验合格,这时,对这3个人一共进行了4次化验,假定对所有人来说,化验结果中含有HGH成分的概率均为
110

(Ⅰ)求一个小组只需经过一次检验就合格的概率;
(Ⅱ)设一个小组检验次数为随机变量ξ,求ξ的分布列及数学期望;
(Ⅲ)至少有两个小组只需经过一次检验就合格的概率.(精确到0.01,参考数据:0.2713≈0.020,0.2714≈0.005,0.7292≈0.500)

查看答案和解析>>

 

一、选择题(本大题共8小题,每小题5分,共40分)

1.A    2.A    3.B    4.B    5.C    6.D    7.B    8.B

二、填空题(本大题共6小题,每小题5分,共30分)

9.-     10.5       11.2,     12.12           13.26      14.-

注:两个空的填空题第一个空填对得2分,第二个空填对得3分.

三、解答题(本大题共6小题,共80分)

15.(本小题满分13分)

(Ⅰ)解:f(x)=cos2x-sin2x+2sinxcosx+1=sin2x+cos2x+1

=2sin+1.  ……………………………………………5分

因此f(x)的最小正周期为,最小值为-1.……………………………7分

(Ⅱ)由f()=2得2 sin+1=2,即sin. ………9分

而由得2+.……………………………10分

故2+.…………………………………………………………12分

解得. ………………………………………………………………13分

16.(本小题满分13分)

解:(Ⅰ)要得40分,8道选择题必须全做对,在其余四道题中,有两道题答对的概率为,有一道题答对的概率为,还有一道题答对的概率为,所以得40分的概率为

P=×××. ………………………………………………5分

(Ⅱ)依题意,该考生得分的取值是20,25,30,35,40,得分为20表示只做对了四道题,其余各题都做错,故求概率为P(=20)=×××

同样可求得得分为25分的概率为

                                   P(=25)=××××+×××+×××

得分为30分的概率为P(=30)=

得分为35分的概率为,P(=35)=

得分为40分的概率为P(=40)=

于是的分布列为

 

20

25

30

35

40

P

 

………………………………………………………………………………11分

故E=20×+25×+30×+35×+40×

该考生所得分数的数学期望为  ………………………………………13分

17.(本小题满分14分)

解法一:

(Ⅰ)在直三棱柱ABC-A1B1C1中,CC1底面

ABC,BC1在底面上的射影为CB.

由AC=3,BC=4,AB=5,可得ACCB.

所以ACBC1………………………4分

(Ⅱ)过C作CEAB于E,连结C1E.

由CC1底面ABC可得C1EAB.

故∠CEC1为二面角C1-AB-C的平面角.

ABC中,CE=

             在RtCC1E中,tanC1EC=

故所求二面角的大小为arctan.……9分

(Ⅲ)存在点D使AC1∥平面CDB1,且D为AB中点,下面给出证明.

设BC1与CB1交于点O,则O为BC1中点.连接OD.

在△ABC1中,D,O分别为AB,BC1的中点,故OD为△ABC1的中位线,

∴OD∥AC1,又AC1平面CDB1,OD平面CDB1

∴AC1∥平面CDB1

故存在点D为AB中点,使AC1∥平面CDB1. ………………………………14分

  解法二:

∵直三棱柱ABC-A1B1C1,底面三边长AC=3,BC=4,AB=5,

∴AC,BC,CC1两两垂直.如图以C为坐标原点,建立空间直角坐标系C-xyz,则

C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4).

(Ⅰ)∵=(-3,0,0),=(0,-4,4),

?=0,故ACBC1   ………………………………………………4分

(Ⅱ)平面ABC的一个法向量为m=(0,0,1),设平面C1AB的一个法向量为             n=(x0,y0,z0),

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=(-3,0,4),=(-3,4,0).

令x0=4,则z0=3,y0=3.

则n=(4,3,3).

故cos<m,n>=

所求二面角的大小为arccos.   ………………………………………9分

(Ⅲ)同解法一   ………………………………………………………………………4分

18.(本小题满分13分)

解:(Ⅰ)依题意有,f ′(x)=a+.……………………………………………3分

因此过(1,f(1))点的直线的斜率为a-1,又f(1)=a,

所以,过(1,f(1))点的直线方程为y-a=(a-1)(x-1).…………4分

又已知圆的圆心为(-1,0),半径为1,依题意,=1.

解得a=1. …………………………………………………………………6分

(Ⅱ)f ′(x)=a+.

因为a>0,所以2-<2,又由已知x<2.………………………………9分

令f ′(x)>0,解得x<2-,令f ′(x)<0,解得2-<x<2. …11分

所以,f(x)的单调增区间是

f(x)的单调减区间是.………………………………………13分

19.(本小题满分13分)

解:(Ⅰ)由已知抛物线的焦点为(0,-),故设椭圆方程为+=1.

将点A(1,)代入方程得+=1,整理得a4-5a2+4=0,

解得a2=4或a2=1(舍).

故所求椭圆方程为+=1. …………………………………………6分

(Ⅱ)设直线BC的方程为y=x+m,设B(x1,y1),C(x2,y2),

代入椭圆方程并化简得4x2+2mx+m2-4=0,   …………………………9分

=8m2-16(m2-4)=8(8-m2)>0,可得m2<8.

由x1+x2=-m,x1x2

又点A到BC的距离为d=, …………………………………………11分

?d=?

当且仅当2m2=16-2m2,即m=±2时取等号(满足>0)

所以△ABC面积的最大值为. ………………………………………13分

20.(本小题满分14分)

解:(Ⅰ)依题意有yn+,于是yn+1-yn

所以数列是等差数列. ………………………………………………4分

(Ⅱ)由题意得=n,即xn+xn+1=2n,(n∈N*)①

所以又有xn+2+ xn+1=2(n+1).                 ②……………………6分

由②-①得xn+2-xn=2,可知x1,x3,x5,…;x2,x4,x6,…都是等差数列.那么得

x2k-1=x1+2(k-1)=2k+a-2,

x2k=x2+2(k-1)=2-a+2(k-1)=2k-a.(k∈N*

故xn  ……………………………………………10分

(Ⅲ)当n为奇数时,An(n+a-1,0),An+1(n+1-a,0),所以=2(1-a);

当n为偶数时,An(n-a,0)An+1(n+a,0),所以=2a;

作BnCnx轴,垂足为Cn,则+,要使等腰三角形AnBnAn+1为直角三角形,必须且只需=2.

当n为奇数时,有2(1-a)=2,即12a=11-3n.     ①

当n=1时,a=;当n=3时,a=;当n≥5时,①式无解.

当n为偶数时,有12a=3n+1,同理可求得a=

综上所述,上述等腰三角形AnBnAn+1中存在直角三角形,此时a的值为.  ………………………………………………………………………14分

 


同步练习册答案