静止不动时.弹簧处于水平方向.两根细线之间的夹角为.则弹簧的长度被压缩了 查看更多

 

题目列表(包括答案和解析)

在水平地面上运动的小车车厢底部有一质量为m1的木块,木块和车厢通过一根水平轻弹簧相连接,弹簧的劲度系数为k.在车厢的顶部用一根细线悬挂一质量为m2的小球.某段时间内发现细线与竖直方向的夹角为θ,在这段时间内木块与车厢保持相对静止,弹簧的形变量为X,如图所示.不计木块与车厢底部的摩擦力,则在这段时间内(  )

查看答案和解析>>

在水平地面上运动的小车车厢底部有一质量为m1的木块,木块和车厢通过一根水平轻弹簧相连接,弹簧的劲度系数为k。在车厢的顶部用一根细线悬挂一质量为m2的小球。某段时间内发现细线与竖直方向的夹角为θ,在这段时间内木块与车厢保持相对静止,弹簧的形变量为X,如图6所示。不计木块与车厢底部的摩擦力,则在这段时间内:(     )

  A. 小车具有向左的加速度,大小为a=g tanθ

  B.小车一定向左做加速运动

  C. 弹簧一定处于拉伸状态  

D.  弹簧的伸长量为X=       

 

查看答案和解析>>

在水平地面上运动的小车车厢底部有一质量为m1的木块,木块和车厢通过一根水平轻弹簧相连接,弹簧的劲度系数为k.在车厢的顶部用一根细线悬挂一质量为m2的小球.某段时间内发现细线与竖直方向的夹角为θ,在这段时间内木块与车厢保持相对静止,弹簧的形变量为X,如图所示.不计木块与车厢底部的摩擦力,则在这段时间内(  )
A.小车具有向左的加速度,大小为a=g tanθ
B.小车一定向左做加速运动
C.弹簧一定处于拉伸状态
D.弹簧的伸长量为X=
m 1g
k
tanθ
精英家教网

查看答案和解析>>

在水平地面上运动的小车车厢底部有一质量为m1的木块,木块和车厢通过一根水平轻弹簧相连接,弹簧的劲度系数为k.在车厢的顶部用一根细线悬挂一质量为m2的小球.某段时间内发现细线与竖直方向的夹角为θ,在这段时间内木块与车厢保持相对静止,弹簧的形变量为X,如图所示.不计木块与车厢底部的摩擦力,则在这段时间内( )

A.小车具有向左的加速度,大小为a=g tanθ
B.小车一定向左做加速运动
C.弹簧一定处于拉伸状态
D.弹簧的伸长量为X=

查看答案和解析>>

在水平地面上运动的小车车厢底部有一质量为m1的木块,木块和车厢通过一根水平轻弹簧相连接,弹簧的劲度系数为k.在车厢的顶部用一根细线悬挂一质量为m2的小球.某段时间内发现细线与竖直方向的夹角为θ,在这段时间内木块与车厢保持相对静止,弹簧的形变量为X,如图所示.不计木块与车厢底部的摩擦力,则在这段时间内


  1. A.
    小车具有向左的加速度,大小为a=g tanθ
  2. B.
    小车一定向左做加速运动
  3. C.
    弹簧一定处于拉伸状态
  4. D.
    弹簧的伸长量为X=数学公式

查看答案和解析>>

一、选择题:本题共10小题,每小题4分,共40分。在每个小题给出的四个选项中至少有一个选项符合题目要求,选全的得4分,选对但不全的得2分,选错和不选的得0分。

1.D   2.C  3.BD   4.A   5.D    6.BD   7.D    8.D   9.A    10.C   

二、实验题 :本题共4个小题,满分23分,把答案直接填在题中的相应位置。

11. A  C       (3分)  

12. A B D      (3分)   

13.D、B、E     (3分)  

14.(14分)(1)E      (2分)

   (2)见右图         (3分)

   (3)见下左图(2分),1.50, 0.80 (各2分)

   (4)如下图右(3分)     

 

 

 

 

 

 

 

 

三、计算题:本题共3个小题,共37分。解答应写出必要的文字说明、示意图、方程式和重要的演算步骤,只写出最后答案的不能得分。有数值计算的题,答案中必须明确写出数值和单位。

15.(12分)解:

(1)小球第一次上升过程中    (1分) 

   (1分)

小球第一次下落过程中       (1分) 

        (1分)

        (1分)

(2) 第一次落回地面时的速度为,有

       (2分)

第二次上升的速度为,有 

  ,    (2分)

小球与地面撞击时损失的能量为     (1分)

小球在空中损失的机械能为     (1分)

从小球刚开始上抛到第二次落到平面之前的过程中损失的机械能为   (1分)

16.(12分)解:(1)微粒在加速电场中由动能定理得  

        解得v0=1.0×104m/s    (2分)

(2)微粒在偏转电场中做类平抛运动,有  

           (2分)

飞出电场时,速度偏转角的正切为 

      解得  θ=30o       (2分)

(3)进入磁场时微粒的速度是:       (2分)

轨迹如图,由几何关系有:         (1分)

洛伦兹力提供向心力:    (2分)

联立以上三式得      

代入数据解得              (1分)

17.(13分)解:

(1)根据牛顿第二定律     ①(2分)

             ②

          ③(1分)

联立①②③得=4m/s2     ④(1分)   

 (2)设金属棒运动达到稳定时,速度为v,所受安培力为F,棒在沿导轨方向受力平衡

           ⑤(2分)

此时金属棒克服安培力做功的功率P等于电路中电阻R消耗的电功率

            ⑥  (1分)

由⑤⑥两式解得      

将已知数据代入上式得=10m/s  (1分)

 (3)设电路中电流为I,两导轨间金属棒的长为L,磁场的磁感应强度为B

                 (1分)

                   (1分)

                 (1分)

由以上三式解得     (1分)

磁场方向垂直导轨平面向上            (1分)

 

 

 

 

 

 

 

 


同步练习册答案