(1)证明:“若A.B满足.则 为定值 是真命题,中的逆命题是否成立?证明你的结论. 查看更多

 

题目列表(包括答案和解析)

已知定义在正实数集R上的函数y=f(x)满足:①对任意a,b∈R都有f(a•b)=f(a)+f(b)②当x>1时,f(x)<0   ③f(3)=-1
(1)求f(1)的值
(2)证明函数y=f(x)在R上为单调减函数
(3)若集合A={(p,q)|f(p2+1)-f(5q)-2>0,p,q∈R+},集合B={(p,q)|f(
p
q
)+
1
2
=0,p,q∈R+},问是否存在p,q,使A∩B≠∅,若存在,求出p,q的值,不存在则说明理由.

查看答案和解析>>

已知定义在正实数集R上的函数y=f(x)满足:①对任意a,b∈R都有f(a•b)=f(a)+f(b)②当x>1时,f(x)<0  ③f(3)=-1
(1)求f(1)的值
(2)证明函数y=f(x)在R上为单调减函数
(3)若集合A={(p,q)|f(p2+1)-f(5q)-2>0,p,q∈R+},集合B={(p,q)|f(数学公式)+数学公式=0,p,q∈R+},问是否存在p,q,使A∩B≠∅,若存在,求出p,q的值,不存在则说明理由.

查看答案和解析>>

已知定义在正实数集R上的函数y=f(x)满足:①对任意a,b∈R都有f=f(a)+f(b)②当x>1时,f(x)<0   ③f(3)=-1
(1)求f(1)的值
(2)证明函数y=f(x)在R上为单调减函数
(3)若集合A={(p,q)|f(p2+1)-f(5q)-2>0,p,q∈R+},集合B={(p,q)|f()+=0,p,q∈R+},问是否存在p,q,使A∩B≠∅,若存在,求出p,q的值,不存在则说明理由.

查看答案和解析>>

设A,B为椭圆的两个动点,O为坐标原点.

(1)证明:“若A,B满足,则为定值”是真命题;

(2)(1)中的逆命题是否成立?证明你的结论.

查看答案和解析>>

已知f(x)=a2x-
1
2
x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则
a+b
2
ab
(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.

查看答案和解析>>

又EG∩FG=G,∴面EFG//面BCO,∵EF面EFG,∴EF//面OBC。………6分

(2)易求得  ….8分

设CF的延长线交OA的延长线于P,BE的延长线交OA的延长线于Q

同理,直线OB的方程为

+

②当直线OA.OB的斜率有一条存在另一条不存在时,

也成立。        …………6分

(2)(1)的逆命题是:若为定值,则   …7分

它是假命题  ….8分

 

 


同步练习册答案