A. B. C.2 D.4 高一年级模块学业水平测试 查看更多

 

题目列表(包括答案和解析)

某校高一年级要组建数学、计算机、航空模型三个兴趣小组,某学生只选报其中的2个,则基本事件共有

[  ]
A.

1个

B.

2个

C.

3个

D.

4个

查看答案和解析>>

(2012•惠州一模)甲乙两个学校高三年级分别有1200人,1000人,为了了解两个学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两个学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:
甲校:
分组 [70,80) [80,90) [90,100) [100,110)
频数 3 4 8 15
分组 [110,120) [120,130) [130,140) [140,150]
频数 15 x 3 2
乙校:
分组 [70,80) [80,90) [90,100) [100,110)
频数 1 2 8 9
分组 [110,120) [120,130) [130,140) [140,150]
频数 10 10 y 3
(Ⅰ)计算x,y的值.
甲校 乙校 总计
优秀
非优秀
总计
(Ⅱ)若规定考试成绩在[120,150]内为优秀,请分别估计两个学校数学成绩的优秀率.
(Ⅲ)由以上统计数据填写右面2×2列联表,并判断是否有90%的把握认为两个学校的数学成绩有差异.
参考数据与公式:
由列联表中数据计算K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

临界值表
P(K≥k0 0.10 0.05 0.010
k0 2.706 3.841 6.635

查看答案和解析>>

(2006•丰台区二模)某校学生会由高一4名学生、高二5名学生、高三4名学生组成,现从中选出2名学生,参加一次活动,则此2名学生不属于同一个年级的选出方法有(  )

查看答案和解析>>

(2013•唐山二模)某校学习小组开展“学生语文成绩与外语成绩的关系”的课题研究,对该校高二年级800名学生上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有60人,语文成绩优秀但外语不优秀的有140人,外语成绩优秀但语文不优秀的有100人.
(Ⅰ)能否在犯错概率不超过0.001的前提下认为该校学生的语文成绩与外语成绩有关系?
(Ⅱ)4名成员随机分成两组,每组2人,一组负责收集成绩,另一组负责数据处理.求学生甲分到负责收集成绩组,学生乙分到负责数据处理组的概率.
p(K2≥k0 0.010 0.005 0.001
k0 6.635 7.879 10.828
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

一、选择题:

1.B  2.C  3.B  4.A  5.A  6.B  7.D  8.D  9.C  10.D  11.C  12.B

二、填空题:

13.{2,3,4}    14.    15.    16.①②④

三.17解:解: 所在的直线的斜率为=,………………(2分)

设直线的斜率为 …………………………………………………(4分)

∴直线的方程为:, …………………………………………………(6分)

………………………………………………………………………(8分)

直线与坐标轴的交点坐标为…………………………………………(10分)

∴直线与坐标轴围成的三角形的面积……………………(12分)

18.解:(1)∵AE∶EB=AH∶HD,∴EH//BD,CF∶FB=CG∶GD,

∴FG//BD,∴EH//FG,          …………………………………………………(2分)

,∴

同理,∴EH=FG          

∴EHFG

故四边形EFGH为平行四边形. …………………(6分)

(2) ∵AE∶EB= CF∶FB,∴EF//AC,

又∵AC⊥BD,∴∠FEH是AC与BD所成的角,………………………(10分)

∴∠FEH=,从而EFGH为矩形,∴EG=FH. ………………………………(12分)

 

 

 

 

 

 

19.解:解:(1)直观图如图:

 

 

 

 

 

 

 

 

 

                                …………………………………………………(6分)

(2)三棱锥底面是斜边为5cm,斜边上高为的直角三角形.

其体积为V=           ………………………………(12分)

20.解: (1)设每辆车的月租金定为x元,则租赁公司的月收益为:

=(100-)(x-150)-×50,…………………(4分)

整理得:=-+162x-21000   …………………………………………………(6分)

(2)每辆车的月租金为元…………………………………(8分)

时,

当租出了88辆车时,租赁公司的月收益303000元. ………………………………(12分)

21.解:点的坐标为∠的平分线与边上的高所在直线的交点的坐标,即

,解得点的坐标为  …………………………(4分)

直线的方程为,即: ………………………(6分)

点关于的对称点的坐标为,则

,解得,即………………………………………(8分)

直线的方程为:      ……………………………………………………(10分)

的坐标是交点的坐标:

,解得,所以的坐标 …………………………(12分)

22.解:(1)∵ AB⊥平面BCD      平面ABC⊥平面BCD CD⊥平面ABC

               AB 平面ABC   ∠BCD=900

          又∵EF∥CD     ……………………………(4分)

EF⊥平面ABC,   ∴平面BEF⊥平面ABC………………(6分)

(2)平面BEF⊥平面ACD                

AC⊥EF       AC⊥平面BEF, ∴AC⊥BE………(8分)

平面BEF∩平面ACD=EF

在Rt△BCD中,BD=

在Rt△ABD中,AB=?tan60°=  ……………………………………(10分)

在Rt△ABC中,AC= , ∴………………(12分)

时,平面DEF⊥平面ACD.  ……………………………………(14分)

 

 

 

 

 


同步练习册答案