(1)试写出.的函数关系式,(2)租赁公司某月租出了88辆车.求租赁公司的月收益多少元? 查看更多

 

题目列表(包括答案和解析)

某科研小组对热能与电能的转化和燃煤每分钟的添加量之间的关系进行科学研究,在对某发电厂A号机组的跟踪调研中发现:若该机组每分钟燃煤的添加量设计标准为a吨,在正常状态下,通过自动传输带给该机组每分钟添加燃煤x吨,理论上可以共生产电能x3-x+10千瓦,而由于实际添加量x与设计标准a存在误差,实际上会导致电能损耗2|x-a|千瓦,最后实际产生的电能为f(x)千瓦.
(1)试写出f(x)关于x的函数表达式;当0<a<1时,求f(x)的极大值.
(2)该科研小组决定调整设计标准a,控制添加量x,实现对最终生产的电能f(x)的有效控制的科学实验,若某次实验中a∈[
1
2
,1),x∈[
1
2
3
2
]
(单位:吨),用电高峰期间,要求该厂的输出电能为每分钟不得低于9千瓦,否则供电不正常.试问这次实验能否实现这个目标?请说明理由.

查看答案和解析>>

某科研小组对热能与电能的转化和燃煤每分钟的添加量之间的关系进行科学研究,在对某发电厂A号机组的跟踪调研中发现:若该机组每分钟燃煤的添加量设计标准为a吨,在正常状态下,通过自动传输带给该机组每分钟添加燃煤x吨,理论上可以共生产电能x3-x+10千瓦,而由于实际添加量x与设计标准a存在误差,实际上会导致电能损耗2|x-a|千瓦,最后实际产生的电能为f(x)千瓦.
(1)试写出f(x)关于x的函数表达式;当0<a<1时,求f(x)的极大值.
(2)该科研小组决定调整设计标准a,控制添加量x,实现对最终生产的电能f(x)的有效控制的科学实验,若某次实验中数学公式(单位:吨),用电高峰期间,要求该厂的输出电能为每分钟不得低于9千瓦,否则供电不正常.试问这次实验能否实现这个目标?请说明理由.

查看答案和解析>>

某科研小组对热能与电能的转化和燃煤每分钟的添加量之间的关系进行科学研究,在对某发电厂A号机组的跟踪调研中发现:若该机组每分钟燃煤的添加量设计标准为a吨,在正常状态下,通过自动传输带给该机组每分钟添加燃煤x吨,理论上可以共生产电能x3-x+10千瓦,而由于实际添加量x与设计标准a存在误差,实际上会导致电能损耗2|x-a|千瓦,最后实际产生的电能为f(x)千瓦.
(1)试写出f(x)关于x的函数表达式;当0<a<1时,求f(x)的极大值.
(2)该科研小组决定调整设计标准a,控制添加量x,实现对最终生产的电能f(x)的有效控制的科学实验,若某次实验中(单位:吨),用电高峰期间,要求该厂的输出电能为每分钟不得低于9千瓦,否则供电不正常.试问这次实验能否实现这个目标?请说明理由.

查看答案和解析>>

某商品每件成本价80元,售价100元,每天售出100件.若售价降低x成(1成=10%),售出商品数量就增加成,要求售价不能低于成本价.

(1)设该商店一天的营业额为y,试求yx之间的函数关系式y=f(x),并写出定义域;

(2)若再要求该商品一天营业额至少10260元,求x的取值范围.

查看答案和解析>>

某商品每件成本价80元,售价100元,每天售出100件.若售价降低x成(1成=10%),售出商品数量就增加成,要求售价不能低于成本价.

(1)设该商店一天的营业额为y,试求yx之间的函数关系式y=f(x),并写出定义域;

(2)若再要求该商品一天营业额至少10260元,求x的取值范围.

查看答案和解析>>

一、选择题:

1.B  2.C  3.B  4.A  5.A  6.B  7.D  8.D  9.C  10.D  11.C  12.B

二、填空题:

13.{2,3,4}    14.    15.    16.①②④

三.17解:解: 所在的直线的斜率为=,………………(2分)

设直线的斜率为 …………………………………………………(4分)

∴直线的方程为:, …………………………………………………(6分)

………………………………………………………………………(8分)

直线与坐标轴的交点坐标为…………………………………………(10分)

∴直线与坐标轴围成的三角形的面积……………………(12分)

18.解:(1)∵AE∶EB=AH∶HD,∴EH//BD,CF∶FB=CG∶GD,

∴FG//BD,∴EH//FG,          …………………………………………………(2分)

,∴

同理,∴EH=FG          

∴EHFG

故四边形EFGH为平行四边形. …………………(6分)

(2) ∵AE∶EB= CF∶FB,∴EF//AC,

又∵AC⊥BD,∴∠FEH是AC与BD所成的角,………………………(10分)

∴∠FEH=,从而EFGH为矩形,∴EG=FH. ………………………………(12分)

 

 

 

 

 

 

19.解:解:(1)直观图如图:

 

 

 

 

 

 

 

 

 

                                …………………………………………………(6分)

(2)三棱锥底面是斜边为5cm,斜边上高为的直角三角形.

其体积为V=           ………………………………(12分)

20.解: (1)设每辆车的月租金定为x元,则租赁公司的月收益为:

=(100-)(x-150)-×50,…………………(4分)

整理得:=-+162x-21000   …………………………………………………(6分)

(2)每辆车的月租金为元…………………………………(8分)

时,

当租出了88辆车时,租赁公司的月收益303000元. ………………………………(12分)

21.解:点的坐标为∠的平分线与边上的高所在直线的交点的坐标,即

,解得点的坐标为  …………………………(4分)

直线的方程为,即: ………………………(6分)

点关于的对称点的坐标为,则

,解得,即………………………………………(8分)

直线的方程为:      ……………………………………………………(10分)

的坐标是交点的坐标:

,解得,所以的坐标 …………………………(12分)

22.解:(1)∵ AB⊥平面BCD      平面ABC⊥平面BCD CD⊥平面ABC

               AB 平面ABC   ∠BCD=900

          又∵EF∥CD     ……………………………(4分)

EF⊥平面ABC,   ∴平面BEF⊥平面ABC………………(6分)

(2)平面BEF⊥平面ACD                

AC⊥EF       AC⊥平面BEF, ∴AC⊥BE………(8分)

平面BEF∩平面ACD=EF

在Rt△BCD中,BD=

在Rt△ABD中,AB=?tan60°=  ……………………………………(10分)

在Rt△ABC中,AC= , ∴………………(12分)

时,平面DEF⊥平面ACD.  ……………………………………(14分)

 

 

 

 

 


同步练习册答案