题目列表(包括答案和解析)
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
当
时
单调递减;当
时
单调递增,故当
时,
取最小值![]()
于是对一切
恒成立,当且仅当
. ①
令
则![]()
当
时,
单调递增;当
时,
单调递减.
故当
时,
取最大值
.因此,当且仅当
时,①式成立.
综上所述,
的取值集合为
.
(Ⅱ)由题意知,
令
则
![]()
![]()
令
,则
.当
时,
单调递减;当
时,
单调递增.故当
,
即![]()
从而
,
又![]()
![]()
所以![]()
因为函数
在区间
上的图像是连续不断的一条曲线,所以存在
使
即
成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出
取最小值
对一切x∈R,f(x)
1恒成立转化为
从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
一、1.
2.3 3.
4.18 5.
6.55 7.
8.0 9.7 10.0或-2
11.
12.
二、13.C 14.B 15.D 16.A
三、17.解:(1)
;
(2)
;
(3)表面积S=48.
18.解:(1)
,

(2)
由
,得当
时,
取得最小值-2
19.解:(1)

(2)
,①
,②
②-①,整理,得
20.解:(1)
,设
则
任取
,
,
当
时,
单调递减;
当
时,
单调递增.
由
得
的值域为
.
(2)设
,
则
,
所以
单调递减.
(3)由
的值域为:
所以满足题设仅需:
解得,
.
21.解:(1)
又
(2)
应用第(1)小题结论,得
取倒数,得
(3)由正弦定理,原题⇔△ABC中,求证:
证明:由(2)的结论得,
且
均小于1,
,

(4)如得出:四边形ABCD中,求证:
且证明正确给3分;
如得出:凸n边形A
求证:
且证明正确给4分.
如能应用到其它内容有创意则给高分.
如得出:
为各项为正数的等差数列,
,求证:
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com