若不等式 查看更多

 

题目列表(包括答案和解析)

选做题
A不等式选讲
已知a∈R,若关于x的方程x2+x+|a-
1
4
|+|a|=0
有实根,求a的取值.
B坐标系与参数方程
已知曲线C1、C2的极坐标方程分别为ρcosθ=3,ρ=4cosθ(ρ≥0,0≤θ<
π
2
,求曲线C1、C2交点的极坐标.

查看答案和解析>>

精英家教网选做题本题包括A,B,C,D四小题,请选定其中 两题 作答,每小题10分,共计20分,
解答时应写出文字说明,证明过程或演算步骤.
A选修4-1:几何证明选讲
自圆O外一点P引圆的一条切线PA,切点为A,M为PA的中点,过点M引圆O的割线交该圆于B、C两点,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.
B选修4-2:矩阵与变换
已知二阶矩阵A=
ab
cd
,矩阵A属于特征值λ1=-1的一个特征向量为α1=
1
-1
,属于特征值λ2=4的一个特征向量为α2=
3
2
.求矩阵A.
C选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线C的参数方程为
x=2cosα
y=sinα
(α为参数)
.以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ-
π
4
)=2
2
.点
P为曲线C上的动点,求点P到直线l距离的最大值.
D选修4-5:不等式选讲
若正数a,b,c满足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

选做题(考生注意:请在(1)(2)两题中,任选做一题作答,若多做,则按(1)题计分)
(1)(坐标系与参数方程选做题)在极坐标系中,直线ρsin(θ+
π4
)=2
被圆ρ=4截得的弦长为
 

(2)(不等式选讲选做题)若不等式|x-2|+|x+3|<a的解集为∅,则实数a的取值范围为
 

查看答案和解析>>

选做题在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.
A选修4-1:几何证明选讲
如图,延长⊙O的半径OA到B,使OA=AB,DE是圆的一条切线,E是切点,过点B作DE的垂线,垂足为点C.
求证:∠ACB=
1
3
∠OAC.
B选修4-2:矩阵与变换
已知矩阵A=
.
11
21
.
,向量
β
=
1
2
.求向量
a
,使得A2
a
=
β

C选修4-3:坐标系与参数方程
已知椭圆C的极坐标方程为ρ2=
a
3cos2θ+4sin2θ
,焦距为2,求实数a的值.
D选修4-4:不等式选讲
已知函数f(x)=(x-a)2+(x-b)2+(x-c)2+
(a+b+c)2
3
(a,b.c为实数)的最小值为m,若a-b+2c=3,求m的最小值.

查看答案和解析>>

选做题:在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答卷纸指定区域内作答.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,AD是∠BAC的平分线,⊙O过点A且与BC边相切于点D,与AB、AC分别交于E,F,求证:EF∥BC.

B.选修4-2:矩阵与变换
已知a,b∈R若矩阵M=
.
-1a
b3
.
所对应的变换把直线l:2x-y=3变换为自身,求a,b的值.

C.选修4-4:坐标系与参数方程
将参数方程
x=2(t+
1
t
)
y=4(t-
1
t
)
(t为参数)化为普通方程.
D.选修4-5:不等式选讲
已知a,b是正数,求证:(a+
1
b
)(2b+
1
2a
)≥
9
2

查看答案和解析>>

一、选择题:BBCCD    CCBDC 

二、填空题:

11. -  12.   13.; 14.; 15.

三、解答题:

16.解(1)f(x)=asinωx-acosωx=2asin(ωx-)

由已知知周期T=-=π,     故a=1,ω=2;……………………6分

(2)由f(A)=2,即sin(2A-)=1,又-<2A-<,    则2A-=,解得A==600…8分

故== ===2.……12分

17.A、B、C分别表示事件甲、乙、丙面试合格,则

(1)至少有一人合格的概率P=1-P()=          4分

(2)可能取值0,1,2,3                                         5分

∴分布列为                                                   

0

1

2

3

 P

   9分

 

 

 

                              12分

18解:(1)连接,交于点,连接

则在正方形中,

故在△中,

平面平面,所以,平面

(2),四边形为正方形,故以点为原点,

轴,轴,建立如图所示的空间直角坐标系,

是面的一个法向量

是平面的一个法向量,则,且

,取,得

此时,向量的夹角就等于二面角的平面角

   二面角的余弦值为

19.解:(1)依题意,距离等于到直线的距离,曲线是以原点为顶点,为焦点的抛物线                                                (2分)

  曲线方程是                                     (4分)

(2)设圆心,因为圆

故设圆的方程                       (7分)

得:

设圆与轴的两交点为,则  (10分)

在抛物线上,    (13分)

所以,当运动时,弦长为定值2                           (14分)

20.方程tan2πx-4tanπx+=(tanπx-1)(tanπx-)=0

得tanπx=或tanπx=

(1)当n=1时,x∈[0,1),即πx∈[0,π)

由tanπx=,或tanπx=得πx=或πx=            

故a1=+=;………………2分

当n=2时,x∈[1,2),则πx∈[π,2π)

由tanπx=或tanπx=,得πx=或πx=       

故a1=+=………………4分

当x∈[n-1,n)时,πx∈[(n-1)π,nπ)

由tanπx=,或tanπx=得πx=+(n-1)π或πx=+(n-1)π

得x=+(n-1)或x=+(n-1),     

故an=+(n-1)++(n-1)=2n-………6分

(2)由(1)得bn+1≥a=2bn-……………………8分

即bn+1-≥a=2(bn-)≥22(bn-1-)≥…≥2n(b1-)=2n-1>0……10分

则≤,即≤

++…+≤1++…+=2-<2.……12分

21.解:(1)函数f(x)=ax3+bx2+cx+d是奇函数,则b=d=0,

∴f /(x)=3ax2+c,则

故f(x)=-x3+x;………………………………4分

(2)∵f /(x)=-3x2+1=-3(x+)(x-)

∴f(x)在(-∞,-),(,+∞)上是增函数,在[-,]上是减函数,

由f(x)=0解得x=±1,x=0, 

如图所示,

当-1<m<0时,f(x)max=f(-1)=0;

当0≤m<时,f(x)max=f(m)=-m3+m,

当m≥时,f(x)max=f()=.

故f(x)max=.………………9分

(3)g(x)=(-x),令y=2k-x,则x、y∈R,且2k=x+y≥2,

又令t=xy,则0<t≤k2

故函数F(x)=g(x)?g(2k-x)=(-x)(-y)=+xy-

              =+xy-=+t+2,t∈(0,k2]

当1-4k2≤0时,F(x)无最小值,不合

当1-4k2>0时,F(x)在(0,]上递减,在[,+∞)上递增,

且F(k2)=(-k)2,∴要F(k2)≥(-k)2恒成立,

必须

故实数k的取值范围是(0,)].………………14分

 

 


同步练习册答案