C.当时.在x轴上 D.当时.在y轴上 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,在平面直角坐标系xOy中,我把由两条射线AE,BF和以AB为直径的半圆所组成的图形叫作图形C(注:不含AB线段).已知A(-1,0),B(1,0),AE∥BF,且半圆与y轴的交点D在射线AE的反向延长线上.
(1)求两条射线AE,BF所在直线的距离;
(2)当一次函数y=x+b的图象与图形C恰好只有一个公共点时,写出b的取值范围;当一次函数y=x+b的图象与图形C恰好只有两个公共点时,写出b的取值范围.

查看答案和解析>>

如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF.

(1)求直线AB的函数解析式;
(2)当点P在线段AB(不包括A,B两点)上时.
①求证:∠BDE=∠ADP;
②设DE=x,DF=y.请求出y关于x的函数解析式;
(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.

查看答案和解析>>

如图,在平面直角坐标系xOy中,圆C:(x+1)2+y2=16,点F(1,0),E是圆C上的一个动点,EF的垂直平分线PQ与CE交于点B,与EF交于点D.

(1)求点B的轨迹方程;
(2)当点D位于y轴的正半轴上时,求直线PQ的方程;
(3)若G是圆C上的另一个动点,且满足FG⊥FE,记线段EG的中点为M,试判断线段OM的长度是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

如图,在空间直角坐标系中,已知直三棱柱的顶点A在x轴上,AB平行于y轴,侧棱AA1平行于z轴.当顶点C在y轴正半轴上运动时,以下关于此直三棱柱三视图的表述正确的是(  )
A.该三棱柱主视图的投影不发生变化
B.该三棱柱左视图的投影不发生变化
C.该三棱柱俯视图的投影不发生变化
D.该三棱柱三个视图的投影都不发生变化
精英家教网

查看答案和解析>>

如图,在平面直角坐标系xoy中,圆C:(x+1)2+y2=16,点F(1,0),E是圆C上的一个动点,EF的垂直平分线PQ与CE交于点B,与EF交于点D.
(1)求点B的轨迹方程;
(2)当D位于y轴的正半轴上时,求直线PQ的方程;
(3)若G是圆上的另一个动点,且满足FG⊥FE.记线段EG的中点为M,试判断线段OM的长度是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

一、选择题(每题5分,共60分)

1―5 ACCBA  6―10 BCABD  11―12 DB

2,4,6

13.   14.   15.   16.①②③

三、解答题(17―21题每小题12分,22题14分,共74分)

17.解:(Ⅰ)

(Ⅱ)

当且仅当时,△ABC面积取最大值,最大值为.

18.解:(Ⅰ)依题意得

(Ⅱ)

19.解法一:(Ⅰ)平面ACE.   

∵二面角D―AB―E为直二面角,且平面ABE.

(Ⅱ)连结BD交AC于C,连结FG,

∵正方形ABCD边长为2,∴BG⊥AC,BG=

平面ACE,

(Ⅲ)过点E作交AB于点O. OE=1.

∵二面角D―AB―E为直二面角,∴EO⊥平面ABCD.

设D到平面ACE的距离为h,

平面BCE, 

解法二:(Ⅰ)同解法一.

(Ⅱ)以线段AB的中点为原点O,OE所在直

线为x轴,AB所在直线为y轴,过O点平行

于AD的直线为z轴,建立空间直角坐标系

O―xyz,如图.

面BCE,BE面BCE,

的中点,

 设平面AEC的一个法向量为

解得

       令是平面AEC的一个法向量.

       又平面BAC的一个法向量为

       ∴二面角B―AC―E的大小为

(III)∵AD//z轴,AD=2,∴

∴点D到平面ACE的距离

20.解:(1)

(2)

,

有最大值;即每年建造12艘船,年利润最大(8分)

(3),(11分)

所以,当时,单调递减,所以单调区间是,且

21.解:(I)∵,且

①④

又由在处取得极小值-2可知②且

将①②③式联立得   (4分)

同理由

的单调递减区间是[-1,1], 单调递增区间是(-∞,1   (6分)

(II)由上问知:,∴

又∵。∴。∴。∴

,∴>0。∴。(8分)

∴当时,的解集是

显然A不成立,不满足题意。

,且的解集是。   (10分)

又由A。解得。(12分)

22.解:(1)设M(xy)是所求曲线上的任意一点,Px1y1)是方程x2 +y2 =4的圆上的任意一点,则

    则有:得,

    轨迹C的方程为

   (1)当直线l的斜率不存在时,与椭圆无交点.

    所以设直线l的方程为y = k(x+2),与椭圆交于A(x1y1)、B(x2y2)两点,N点所在直线方程为

    由

    由△=

    即 …   

    ,∴四边形OANB为平行四边形

    假设存在矩形OANB,则,即

    即

    于是有    得 … 设

即点N在直线上.

 ∴存在直线l使四边形OANB为矩形,直线l的方程为