.由此得 查看更多

 

题目列表(包括答案和解析)

由倍角公式cos2x=2cos2x-1,可知cos2x可以表示为cosx的二次多项式.
对于cos3x,我们有
cos3x=cos(2x+x)=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cocs.
可见cos3x可以表示为cosx的三次多项式.
一般地,存在一个n次多项式Pn(t),使得cosnx=Pn(cosx),这些多项式Pn(t)称为切比雪夫(P.L.Tschebyscheff)多项式.
(1)请尝试求出P4(t),即用一个cosx的四次多项式来表示cos4x.
(2)化简cos(60°-θ)cos(60°+θ)cosθ,并利用此结果求sin20°sin40°sin60°sin80°的值.

查看答案和解析>>

由三条直线x=1,x+y-2=0和x-y-2=0围成一个封闭的平面图形.求此平面图形绕直线x=1旋转一周所得旋转体的体积和表面积.

查看答案和解析>>

由于浓酸泄漏对河流形成了污染,现决定向河中投入固体碱.1个单位的固体碱在水中逐步溶化,水中的碱浓度y与时间x的关系,可近似地表示为y=
-
16
x+2
-x+8    0≤x≤2
4-x                  2<x≤4
.只有当河流中碱的浓度不低于1时,才能对污染产生有效的抑制作用.
(1)如果只投放1个单位的固体碱,则能够维持有效抑制作用的时间有多长?
(2)当河中的碱浓度开始下降时,即刻第二次投放1个单位的固体碱,此后,每一时刻河中的碱浓度认为是各次投放的碱在该时刻相应的碱浓度的和,求河中碱浓度可能取得的最大值.

查看答案和解析>>

由于浓酸泄漏对河流形成了污染,现决定向河中投入固体碱.1个单位的固体碱在水中逐步溶化,水中的碱浓度y(个浓度单位)与时间x(个时间单位)的关系为y=
-
24
x+3
-x+8,   0≤x≤
3
2
23
12
-
1
2
x   ,      
3
2
<x≤
23
6
.只有当河流中碱的浓度不低于1(个浓度单位)时,才能对污染产生有效的抑制作用.
(1)如果只投放1个单位的固体碱,则能够维持有效抑制作用的时间有多长?
(2)当河中的碱浓度开始下降时,即刻第二次投放1个单位的固体碱,此后,每一时刻河中的碱浓度认为是两次投放的碱在该时刻相应的碱浓度的和,求河中碱浓度可能取得的最大值.

查看答案和解析>>

由于浓酸泄漏对河流形成了污染,现决定向河中投入固体碱.1个单位的固体碱在水中逐步溶化,水中的碱浓度y与时间x的关系,可近似地表示为y=.只有当河流中碱的浓度不低于1时,才能对污染产生有效的抑制作用.
(1)如果只投放1个单位的固体碱,则能够维持有效抑制作用的时间有多长?
(2)当河中的碱浓度开始下降时,即刻第二次投放1个单位的固体碱,此后,每一时刻河中的碱浓度认为是各次投放的碱在该时刻相应的碱浓度的和,求河中碱浓度可能取得的最大值.

查看答案和解析>>

1.D    2.B    3.C    4.B    5.A    6.B    7.B    8.D    9.C    10.C

l1.A   12.C

13.

14.15

15.

16.

提示:

1.D   

2.B    视力住0.9以上的频率为,人数为

3.C    ,且

        若,则

        反之,若,则

4.B    ,由,得

5.A   

6.B   

时,,由

时,

    当时,,由

7.B    该几何体是上面是正四棱锥,下面为正方体,体积为

8.D   

9.C   

10.C  

,或

1l.A  

方程为

过点

,

,

,

 12.C  画出平面区域

的圆心,半径为l,

的最大值为的最小值为

的最大值为,最小值为

13.

    ,   

14.15 

   

   

15.

   

   

   

16.

    又

   

17.解:(1),                          (2分)

.                            (4分)

        由余弦定理,得.                                (6分)

(2),                                 (7分)

      (9分)                               (10分)

                                         (11分)

                            (12分)

18.解:(1)的可能取值为l,2,3,4.

       

                                              (4分)

        ∴甲取球次数的数学期望. (6分)

(2)由题意,两人各自从自己的箱子里任取一球比颜色

共有(种)不同情形,                            (8分)

每种情形都是等可能,记甲获胜为事件A,则

                    (11分)

        所以甲获胜的概率小于乙获胜的概率,这个游戏规则不公平           (12分)

19.解:以为原点,所在的直线为

轴,建立如图所示的空间直角坐标系,

                    (3分)

(1)

即直线所成角的余角的余弦值为             (6分)

(2)设

        由平面

   得

,即的中点.                                 (9分)

(3)由(2)知为平面的法向量.

        设为平面的法向量,

       

        由

即二面角的余弦值为                (12分)

(非向量解法参照给分)

20.(1)解:成等比数列,,即

,                                         (3分)

                             (5分)

(2)证明: .                          (6分)

        是首项为2,公差为2的等差数列,

                                         (7分)

       

        (当且仅当时取“=”).                                                 ①              (9分)

       

     当且仅当时取“=”.                     ②            (11分)

        又①②中等号不可能同时取到,  (12分)

21.解:(1)设

对称轴方程.由题意恒成立,                        (2分)

在区间上单凋递增,                                (3分)

        ∴当且仅当椭圆上的点在椭圆的左、右顶点时取得最小值与最大值.(4分)

安徽高中数学网站注:这里用椭圆第二定义根简单直观)

(2)由已知与(1)得:

,                                  (5分)

∴椭圆的标准方程为.                                 (6分)

(3)设,联立

.                             (7分)

,(8分)

∵椭圆的右顶点为

                                         (9分)

        解得:,且均满足,           (10分)

        当时,的方程为,直线过定点(2,0),与已知矛盾.

时,的方程为,直线过定点(,0),       (11分)

∴直线过定点,定点坐标为(,0).                              (12分)

22,解:(1)由题意:的定义域为,且

,故上是单调递增函数.          (2分)

(2)由(1)可知:

① 若,则,即上恒成立,此时上为增函数,

(舍去).                       (4分)

② 若,则,即上恒成立,此时上为减函数,

(舍去).                 (6分)

        ③ 若,令

        当时,上为减函数,

        当时,上为增函数,

                    (9分)

综上可知:.                                           (10分)(3)

        又                                         (11分)

        令

        上是减函数,,即

        上也是减函数,

        令,∴当恒成立时,.(14分)

 

 


同步练习册答案