命题(2)中.如果p则q,p称此命题的条件.q称结论,将条件与结论倒过来.得到:如果三个角的和是1800.那么它们是一个三角形的内角――称原命题的逆命题,这样原命题也是它的逆命题.称互逆关系将原命题条件和结论全部否定.得到:如果三个角不是三角形的内角.则它们的内角和不是1800――称原命题的否命题,这样原命题也是它的否命题.称二者互否的关系.将逆命题条件和和结论全部否定.得到:如果三个角的和不是1800.那么它们不是一个三角形的内角――称原命题的逆否命题,这样原命题也是它的逆否命题.称互为逆否关系,可以看出.它与逆命题是互否关系.与否命题是互逆关系.一般的有 查看更多

 

题目列表(包括答案和解析)

命题p:满足关于x的不等式2x2-9x+a<0(解集非空)的每一个x的值至少满足不等式x2-4x+3<0和x2-6x+8<0中的一个;命题q:函数y=lg(ax2-x+a)的定义域为R.
(1)求命题p成立时a的取值范围;
(2))如果“p∧q”为假,“p∨q”为真,求实数a的取值范围.

查看答案和解析>>

命题p:满足关于x的不等式2x2-9x+a<0(解集非空)的每一个x的值至少满足不等式x2-4x+3<0和x2-6x+8<0中的一个;命题q:函数y=lg(ax2-x+a)的定义域为R.
(1)求命题p成立时a的取值范围;
(2))如果“p∧q”为假,“p∨q”为真,求实数a的取值范围.

查看答案和解析>>

(2010•福建模拟)已知中心的坐标原点,以坐标轴为对称轴的双曲线C过点Q(2,
3
3
)
,且点Q在x轴上的射影恰为该双曲线的一个焦点F1
(Ⅰ)求双曲线C的方程;
(Ⅱ)命题:“过椭圆
x2
25
+
y2
16
=1
的一个焦点F作与x轴不垂直的任意直线l”交椭圆于A、B两点,线段AB的垂直平分线交x轴于点M,则
|AB|
|FM|
为定值,且定值是
10
3
”.命题中涉及了这么几个要素:给定的圆锥曲线E,过该圆锥曲线焦点F的弦AB,AB的垂直平分线与焦点所在的对称轴的交点M,AB的长度与F、M两点间距离的比值.试类比上述命题,写出一个关于抛物线C的类似的正确命题,并加以证明
(Ⅲ)试推广(Ⅱ)中的命题,写出关于圆锥曲线(椭圆、双曲线、抛物线)的统一的一般性命题(不必证明).

查看答案和解析>>

下列命题中:
①若p,q为两个命题,则“p且q为真”是“p或q为真”的必要不充分条件.
②若p为:?×∈R,x2+2x≤0,则?p为:?×∈R,x2+2x>0.
③命题“?x,x2-2x+3>0”的否命题是“?x,x2-2x+3<0”.
④命题“若?p,则q”的逆否命题是“若p,则?q”.
其中正确结论的个数是(  )

查看答案和解析>>

(2012•武昌区模拟)(1)在极坐标系中,点P的极坐标为(
2
π
4
),点Q是曲线C上的动点,曲线C的极坐标方程为ρ(cosθ-sinθ)+1=0,则P、Q两点之间的距离的最小值为
2
2
2
2

(2)已知PA是圆O的切线,切点为A,PA=2,AC是圆O的直径,PC与圆O交于点B,PB=l,则圆D的半径R=
3
3

查看答案和解析>>


同步练习册答案