-1<m<4/3 查看更多

 

题目列表(包括答案和解析)

已知,设是方程的两个根,不等式对任意实数恒成立;函数有两个不同的零点.求使“P且Q”为真命题的实数的取值范围.

【解析】本试题主要考查了命题和函数零点的运用。由题设x1+x2=a,x1x2=-2,

∴|x1-x2|=.

当a∈[1,2]时,的最小值为3. 当a∈[1,2]时,的最小值为3.

要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判别式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

可得到要使“P∧Q”为真命题,只需P真Q真即可。

解:由题设x1+x2=a,x1x2=-2,

∴|x1-x2|=.

当a∈[1,2]时,的最小值为3.

要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判别式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

综上,要使“P∧Q”为真命题,只需P真Q真,即

解得实数m的取值范围是(4,8]

 

查看答案和解析>>

已知A 、B 、C 三点在曲线上,其横坐标依次为1,m,4(1<m<4),当△ABC的面积最大时,m等于  
[     ]
A.3  
B.
C.
D.

查看答案和解析>>

(2012•吉安二模)若关于x的不等式|x+1|+|x-m|>4的解集为R,则实数m的取值范围
{m|m>3或m<-5}
{m|m>3或m<-5}

查看答案和解析>>

已知函数f(x)=x-
m
x
-2lnx在定义域是单调函数,f′(x)是函数f(x)的导函数.
(1)求实数m的取值范围;
(2)当m取得最小值时,数列{an}满足:a1=m+3,an+1=f′(
1
an+1
)-nan+1,n∈N*
试证:
①an>n+2;
1
a1+1
+
1
a2+1
+
1
a3+1
+…+
1
an+1
m+1
m+4

查看答案和解析>>

拟定从甲地到乙地通话m分钟的话费由f(m)
3.71,(0<m≤4)
1.06(0.5[m]+1),(m>4)
给出,其中[m]是大于或等于m的最小正整数,如:[3.74]=4,,从甲地到乙地通话5.2分钟的话费是(  )

查看答案和解析>>


同步练习册答案