利用命题的真假求参数的取值范围 查看更多

 

题目列表(包括答案和解析)

已知命题p:方程表示焦点在y轴上的椭圆;命题q:双曲线的离心率,若p、q有且只有一个为真,求m的取值范围。

【解析】本试题主要考查了椭圆的方程,以及双曲线的几何性质的综合运用,并运用命题的真假关系,来确定参数m的取值范围。

 

查看答案和解析>>

已知命题p:方程表示焦点在y轴上的椭圆;命题q:双曲线的离心率,若p、q有且只有一个为真,求m的取值范围。

【解析】本试题主要考查了椭圆的方程,以及双曲线的几何性质的综合运用,并运用命题的真假关系,来确定参数m的取值范围。

 

查看答案和解析>>

已知函数.

(Ⅰ)若函数依次在处取到极值.求的取值范围;

(Ⅱ)若存在实数,使对任意的,不等式 恒成立.求正整数的最大值.

【解析】第一问中利用导数在在处取到极值点可知导数为零可以解得方程有三个不同的实数根来分析求解。

第二问中,利用存在实数,使对任意的,不等式 恒成立转化为,恒成立,分离参数法求解得到范围。

解:(1)

(2)不等式 ,即,即.

转化为存在实数,使对任意的,不等式恒成立.

即不等式上恒成立.

即不等式上恒成立.

,则.

,则,因为,有.

在区间上是减函数。又

故存在,使得.

时,有,当时,有.

从而在区间上递增,在区间上递减.

[来源:]

所以当时,恒有;当时,恒有

故使命题成立的正整数m的最大值为5

 

查看答案和解析>>

关于的不等式,的解集是函数 的定义域为。若“”为真,“”为假,求的取值范围。

【解析】本试题主要考查了命题的真智慧以及不等式的解集的综合运用。利用

真则                      

真,则      得   

”为真,“”为假,则一真一假分类讨论得到。

真则                      

真,则      得                ……………………6分

”为真,“”为假,则一真一假               

假时           ………………………………9分

真时           ………………………………12分

的取值范围为    

 

查看答案和解析>>

设命题p:函数f(x)=x2-2mx+1在[1,+∞)上是增函数,命题q:函数f(x)=lg(x2-mx+1)的定义域为R.
(1)若m=2,试判断命题p的真假;
(2)若命题p与命题q一真一假,试求实数m的取值范围.

查看答案和解析>>


同步练习册答案