例4.探讨函数f(x)=kx+b在[m.n]上恒正的充要条件.并证明 查看更多

 

题目列表(包括答案和解析)

(08年北师大附中月考)已知函数f (x ) = kx + bk≠0),f (4) = 10,又f (1),f (2),f (6)成等比数列.

(1)求函数f (x )的解析式;

(2)设an = 2f (n ) + 2n,求数列{an}的前n项和Sn.

查看答案和解析>>

(本小题满分12分)

阅读下面内容,思考后做两道小题。

在一节数学课上,老师给出一道题,让同学们先解,题目是这样的:

已知函数f(x)=kx+b,1≤f(1)≤3,-1≤f(-1)≤1,求Z=f(2)的取值范围。

题目给出后,同学们马上投入紧张的解答中,结果很快出来了,大家解出的结果有很多个,下面是其中甲、乙两个同学的解法:

甲同学的解法:由f(1)=k+b,f(-1)=-k+b得

①+②得:0≤2b≤4,即0≤b≤2               ③

② ×(-1)+①得:-1≤k-b≤1             ④

④+②得:0≤2k≤4                                               ⑤

③+⑤得:0≤2k+b≤6。

又∵f(2)=2k+b

∴0≤f(2)≤6,0≤Z≤6

      乙同学的解法是:由f(1)=k+b,f(-1)=-k+b得

①+②得:0≤2b≤4,即:0≤b≤2                        ③

①-②得:2≤2k≤2,即:1≤k≤1

∴k=1,

∵f(2)=2k+b=1+b

由③得:1≤f(2)≤3

∴:1≤Z≤3

(Ⅰ)如果课堂上老师让你对甲、乙两同学的解法给以评价,你如何评价?

(Ⅱ)请你利用线性规划方面的知识,再写出一种解法。

查看答案和解析>>

已知向量
a
=(x,1-x)
b
=(lnx,ln(1-x))(0<x<1)

(1)是否存在x,使得
a
b
a
b
?若存在,则举一例说明;若不存在,则证明之.
(2)求函数f(x)=
a
b
在区间[
1
3
3
4
]
上的最值.(参考公式[lnf(x)]=
f(x)
f(x)

查看答案和解析>>

已知函数f(x)=kx+b的图象与x轴、y轴分别交于A、B两点,分别是与x轴和y轴正半轴同方向的单位向量),函数g(x)=―x―6,

(1)求k、b的值;

(2)求不等式f(x)>g(x)的解集M;

(3)当M时,求函数的最小值

查看答案和解析>>

已知函数f(x)=kx+b的图象与x、y轴分别相交于点A、B,( 、分别是与x、y轴正半轴同方向的单位向量), 函数g(x)=x2-x-6.

(1)求k、b的值;

(2)当x满足f(x)> g(x)时,求函数的最小值.

 

 

查看答案和解析>>


同步练习册答案