求平面法向量得方法五.布置作业:教材P97---1,2,P99---14[补充习题] 查看更多

 

题目列表(包括答案和解析)

n
=(1,-2,2)是平面α的一个法向量,则下列向量能作为平面α法向量的是(  )

查看答案和解析>>

=(1,-2,2)是平面α的一个法向量,则下列向量能作为平面α法向量的是( )
A.(1,-2,0)
B.(0,-2,2)
C.(2,-4,4)
D.(2,4,4)

查看答案和解析>>

(2010•台州一模)我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且法向量为
n
=(1,-2)
的直线(点法式)方程为1×(x+3)+(-2)×(y-4)=0,化简得x-2y+11=0. 类比以上方法,在空间直角坐标系中,经过点A(3,4,5),且法向量为
n
=(2,1,3)
的平面(点法式)方程为
2x+y+3z-21=0
2x+y+3z-21=0
(请写出化简后的结果).

查看答案和解析>>

我们把在平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系xOy中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且其法向量为
n
=(1,-2)
的直线方程为1x(x+3)+(-2)×(y-4)=0,化简得x-2y+11=0.类比上述方法,在空间坐标系O-xyz中,经过点A(1,2,3),且其法向量为
n
=(-1,-2,1)
的平面方程为
 

查看答案和解析>>

(2012•浙江模拟)平面内与直线平行的非零向量称为直线的方向向量;与直线的方向向量垂直的非零向量称为直线的法向量.在平面直角坐标系中,利用求动点的轨迹方程的方法,可以求出过点A(2,1)且法向量为
n
=(-1,2)的直线
(点法式)方程为-(x-2)+2(y-1)=0,化简后得x-2y=0.类比以上求法,在空间直角坐标系中,经过点A(2,1,3),且法向量为
n
=(-1,2,1)
的平面(点法式)方程为
x-2y-z+3=0
x-2y-z+3=0
(请写出化简后的结果).

查看答案和解析>>


同步练习册答案