解:(1)f/(x)=-,分子的判别式△=4(b2+a2)>0, f/(x)有两个零点.对应的f(x)有两个极值点 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.

(1)求f(x)的解析式;

(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依题意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)设切点为(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)

又切线过点A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

则g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.

∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2

画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,

所以m的取值范围是(-6,2).

 

查看答案和解析>>

(理)设A={x|x≠kπ+,k∈Z},已知a=(2cos,sin),b=(cos,3sin),其中α、β∈A,

(1)若α+β=,且a=2b,求α,β的值;

(2)若a·b=,求tanαtanβ的值.

(文)已知函数f(x)=-x2+4,设函数F(x)=

(1)求F(x)的表达式;

(2)解不等式1≤F(x)≤2;

(3)设mn<0,m+n>0,判断F(m)+F(n)能否小于0?

查看答案和解析>>

(理)已知函数f(x)=ax2+4(a为非零实数),设函数F(x)=f(x),x>0,-f(x),x<0.

(1)若f(-2)=0,求F(x)的表达式;

(2)在(1)的条件下,解不等式1≤|F(x)|≤2;

(3)设mn<0,m+n>0,试判断F(m)+F(n)能否大于0?

(文)杭州风景区有一家自行车租车公司,公司设有A、B、C三个营业站,顾客可以从任何一处营业站租车,并在任何一处营业站还车.根据统计发现租车处与还车处有如下的规律性:

①在A站租车者有30%在A站还车,20%在B站还车,50%在C站还车;

②在B站租车者有70%在A站还车,10%在B站还车,20%在C站还车;

③在C站租车者有40%在A站还车,50%在B站还车,10%在C站还车.

记P(XY)表示“某车由X站租出还至Y站的概率”,P(XY)P(YZ)表示“某车由X站租出还至Y站,再由Y站租出还至Z站的概率”.按以上约定的规则,

(1)求P(CC);

(2)求P(AC)P(CB);

(3)设某辆自行车从A站租出,求此车归还至某站再次出租后,回到A站的概率.

查看答案和解析>>

一般地,如果函数f(x)的图象关于点(a,b)对称,那么对定义域内的任意x,则f(x)+f(2a-x)=2b恒成立.已知函数f(x)=
4x
4x+m
的定义域为R,其图象关于点M(
1
2
1
2
)
对称.
(1)求常数m的值;
(2)解方程:log2[1-f(x)]log2[4-xf(x)]=2
(3)求证:f(
1
n
)+f(
2
n
)+…+f(
n-2
n
)+f(
n-1
n
)+f(
n
n
)=
3n+1
6
(n∈N+).

查看答案和解析>>

已知f(x)是定义在[-1,1]上的奇函数,且f (1)=1,若m,n∈[-1,1],m+n≠0时有
f(m)+f(n)
m+n
>0
,解不等式:f(x+
1
2
)<f(
1
x-1
)

查看答案和解析>>


同步练习册答案