题目列表(包括答案和解析)
|
| 1 |
| x+1 |
| 1 |
| |P1P2|2 |
| 1 |
| |P1P3|2 |
| 1 |
| |P1Pn|2 |
| 2 |
| 5 |
(本小题满分13分)
对于定义域分别为
的函数
,规定:
函数![]()
若函数
,求函数
的取值集合;
若
,设
为曲线
在点
处切线的斜率;而
是等差数列,公差为1
,点
为直线
与
轴的交点,点
的坐标为
。求证:
;
若
,其中
是常数,且
,请问,是否存在一个定义域为
的函数
及一个
的值,使得
,若存在请写出一个
的解析式及一个
的值,若不存在请说明理由。
如图,在三棱柱
中,
侧面
,
为棱
上异于
的一点,
,已知
,求:
(Ⅰ)异面直线
与
的距离;
(Ⅱ)二面角
的平面角的正切值.
【解析】第一问中,利用建立空间直角坐标系
解:(I)以B为原点,
、
分别为Y,Z轴建立空间直角坐标系.由于,![]()
![]()
在三棱柱
中有
,
设![]()
![]()
![]()
又
侧面
,故
. 因此
是异面直线
的公垂线,则
,故异面直线
的距离为1.
(II)由已知有
故二面角
的平面角
的大小为向量
与
的夹角.
![]()
|
分别为A1B1、BC的中点.
(I)试求
的值,使
;
(II)设AC1的中点为P,在(I)的条件下,求证:NP⊥平面AC1M.
(文)已知函数
的极大值
为7;当x=3时,f(x)有极小值.
(I)求函数f(x)的解析式;
(II)求函数f(x)在点P(1,f(1))处的切线方程.
(本小题满分14分)已知函数f(x)=aex,g(x)= lna-ln(x +1)(其中a为常数,e为自然对数底),函数y =f(x)在A(0,a)处的切线与y =g(x)在B(0,lna)处的切线互相垂直.
(Ⅰ) 求f(x) ,g(x)的解析式;
(Ⅱ) 求证:对任意n ÎN*, f(n)+g(n)>2n;
(Ⅲ) 设y =g(x-1)的图象为C1,h(x)=-x2+bx的图象为C2,若C1与C2相交于P、Q,过PQ中点垂直于x轴的直线分别交C1、C2于M、N,问是否存在实数b,使得C1在M处的切线与C2在N处的切线平行?说明你的理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com