一个完整的数学发现过程是:计算猜想证明.其中的证明有两个总体思路:一是证明命题本身称直接证明.二是证明与该命题等价的另一个命题.称间接证明.今天主要说明直接证明 查看更多

 

题目列表(包括答案和解析)

已知某校5个学生的数学和物理成绩如下:
学生的编号 1 2 3 4 5
数学成绩xi 80 75 70 65 60
物理成绩yi 70 66 68 64 62
(Ⅰ)通过大量事实证明发现,一个学生的数学成绩和物理成绩是具有很强的线性相关关系的,在上述表格中,用x表示数学成绩,用y表示物理成绩,求y关于x的回归方程;
(Ⅱ)利用残差分析回归方程的拟合效果,若残差和在(-0.1,0.1)范围内,则称回归方程为“优拟方程”,问:该回归方程是否为“优拟方程”.
提示:参考数据:
5
i=1
xiyi=23190
5
i=1
x
2
i
=24750

查看答案和解析>>

已知某校5个学生的数学和物理成绩如下表
学生的编号i 1 2 3 4 5
数学xi 80 75 70 65 60
物理yi 70 66 68 64 62
(1)假设在对这5名学生成绩进行统计时,把这5名学生的物理成绩搞乱了,数学成绩没出现问题,问:恰有2名学生的物理成绩是自己的实际分数的概率是多少?
(2)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系的,在上述表格是正确的前提下,用x表示数学成绩,用y表示物理成绩,求y与x的回归方程;
(3)利用残差分析回归方程的拟合效果,若残差和在(-0.1,0.1)范围内,则称回归方程为“优拟方程”,问:该回归方程是否为“优拟方程”.
参考数据和公式:
?
y
=bx+a
,其中b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
a=
.
y
-b
.
x
5
i=1
xiyi=23190,
5
i=1
x
2
i
=24750

残差和公式为:
5
i=1
(yi-
?
y
i
)

查看答案和解析>>

(本题满分15分)杨辉是中国南宋末年的一位杰出的数学家、数学教育家,杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.下图是一个11阶杨辉三角:

(1)求第20行中从左到右的第3个数;
(2)若第行中从左到右第13与第14个数的比为,求的值;
(3)写出第行所有数的和,写出阶(包括阶)杨辉三角中的所有数的和;
(4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35,我们发现,事实上,一般地有这样的结论:第斜列中(从右上到左下)前个数之和,一定等于第斜列中第个数.
试用含有的数学式子表示上述结论,并证明.

查看答案和解析>>

(本题满分15分)杨辉是中国南宋末年的一位杰出的数学家、数学教育家,杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.下图是一个11阶杨辉三角:

  

(1)求第20行中从左到右的第3个数;

(2)若第行中从左到右第13与第14个数的比为,求的值;

(3)写出第行所有数的和,写出阶(包括阶)杨辉三角中的所有数的和;

(4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35,我们发现,事实上,一般地有这样的结论:第斜列中(从右上到左下)前个数之和,一定等于第斜列中第个数.

试用含有的数学式子表示上述结论,并证明.

 

查看答案和解析>>

已知某校5个学生的数学和物理成绩如下表

(1)假设在对这名学生成绩进行统计时,把这名学生的物理成绩搞乱了,数学成绩没出现问题,问:恰有名学生的物理成绩是自己的实际分数的概率是多少?

(2)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系的,在上述表格是正确的前提下,用表示数学成绩,用表示物理成绩,求的回归方程;

(3)利用残差分析回归方程的拟合效果,若残差和在范围内,则称回归方程为“优拟方程”,问:该回归方程是否为“优拟方程”.

参考数据和公式:,其中

,残差和公式为:

 

查看答案和解析>>


同步练习册答案