[情况反馈] 第二课时:二阶矩阵与平面向量的乘法[教学目标][教学难点]变换形式的转换[教学过程] 查看更多

 

题目列表(包括答案和解析)

已知二阶矩阵M有特征值λ=8及对应的一个特征向量
e1
=[
 
1
1
],并且矩阵M对应的变换将点(-1,2)变换成(-2,4).
(1)求矩阵M;
(2)求矩阵M的另一个特征值.

查看答案和解析>>

二阶矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).设直线l在变换M作用下得到了直线m:x-y=4,求l的方程.

查看答案和解析>>

已知二阶矩阵A=
12
01
,且AX=
-10
12
,则二阶矩阵X=
 

查看答案和解析>>

(1)选修4-2:矩阵与变换
已知二阶矩阵M有特征值λ=3及对应的一个特征向量
e1
=
1
1
,并且矩阵M对应的变换将点(-1,2)变换成(3,0),求矩阵M.
(2)选修4-4:坐标系与参数方程
过点M(3,4),倾斜角为
π
6
的直线l与圆C:
x=2+5cosθ
y=1+5sinθ
(θ为参数)相交于A、B两点,试确定|MA|•|MB|的值.
(3)选修4-5:不等式选讲
已知实数a,b,c,d,e满足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,试确定e的最大值.

查看答案和解析>>

二阶矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).
(1)求矩阵M;
(2)设直线l在变换M作用下得到了直线m:x-y=4,求l的方程.

查看答案和解析>>


同步练习册答案